Skip to main content
Log in

Highly sensitive PCF-SPR biosensor for hyperthermia temperature monitoring

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A highly sensitive photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) biosensor is designed for local temperature detection in brain tumor treatment. In order to obtain high sensitivity, the mixture of chloroform and toluene whose refractive index is temperature sensitive and is injected into the analyte channel coated with a thin gold layer. The temperature sensing performance and coupling properties of the PCF-SPR biosensor are numerically simulated by the finite-element method. By means of the wavelength interrogation method, a maximum temperature sensitivity of − 6000 pm/°C is achieved for the temperature sensing range between − 50 °C and 100 °C, corresponding to a resolution of the PCF-SPR temperature biosensor as low as 0.017 °C. The temperature sensitivity is the largest among the reported PCF-SPR sensors, to the best of our knowledge. Owing to the high sensitivity and resolution, the proposed biosensor has the potential to be used for hyperthermia monitoring in brain tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Saccomandi, E. Schena, S. Silvestri, Techniques for temperature monitoring during laser-induced thermotherapy: an overview. Int. J. Hyperth. 29(7), 609–619 (2013)

    Article  Google Scholar 

  2. A. Hassani, M. Skorobogatiy, Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 14(24), 11616–11621 (2006)

    Article  ADS  Google Scholar 

  3. R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B 12, 213–220 (1993)

    Article  Google Scholar 

  4. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 243, 311–325 (2017)

    Article  Google Scholar 

  5. P.B. Bing, Z.Y. Li, J.Q. Yao, Y. Lu, Z.G. Di, A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core. Mod. Phys. Lett. B 26(13), 1250082-1–1250082-9 (2012)

    Article  ADS  Google Scholar 

  6. Q. Liu, S. Li, H. Chen, J. Li, Z. Fan, High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 8(4), 046701 (2015)

    Article  ADS  Google Scholar 

  7. C. Liu, F. Wang, J. Lv, T. Sun, Q. Liu, C. Fu, H. Mu, P.K. Chu, A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 359, 378–382 (2016)

    Article  ADS  Google Scholar 

  8. Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, Q. Lu, Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt. Lett. 38(3), 263–265 (2013)

    Article  ADS  Google Scholar 

  9. M.D. Vries, B.D. Zimmermann, A.M. Vengsarkar, R.O. Claus, Liquid core optical fiber temperature sensors. IEEE Southeastcon 2, 1135–1138 (1991)

    Article  Google Scholar 

  10. Y. Xu, X. Chen, Y. Hu, High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference of core and cladding materials. Sensors 8(3), 1872–1878 (2008)

    Article  Google Scholar 

  11. Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, W. Tong, Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt. Express 18(15), 15383–15388 (2010)

    Article  ADS  Google Scholar 

  12. Y. Peng, J. Hou, Z. Huang, Q. Lu, Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 51(26), 6361–6367 (2012)

    Article  ADS  Google Scholar 

  13. N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors (Basel) 14(9), 16035–16045 (2014)

    Article  Google Scholar 

  14. B.B. Shuai, L. Xia, Y. Zhang, D. Liu, Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt. Express 20(6), 5900–5974 (2012)

    Article  Google Scholar 

  15. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, C. Li, A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 12, 015005 (2010)

    Article  ADS  Google Scholar 

  16. G. Ghosh, M. Endo, T. Iwasaki, Temperature-dependent Sellmeier coefficients and chromatic dispersions for some, optical fiber glasses. J. Lightwave Technol. 12, 1338–1342 (1994)

    Article  ADS  Google Scholar 

  17. M.A.R. Franco, V.A. Serrao, F. Sircilli, Side-polished microstructured optical fiber for temperature sensor application. IEEE Photonics Technol. Lett. 19, 1738–1740 (2007)

    Article  ADS  Google Scholar 

  18. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  19. W.E. Lawrence, Electron–electron scattering in the low temperature resistivity of the noble metals. Phys. Rev. B 13, 5316–5319 (1976)

    Article  ADS  Google Scholar 

  20. A.K. Sharma, B.D. Gupta, Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection. Opt. Fiber Technol. 12(1), 87–100 (2006)

    Article  ADS  Google Scholar 

  21. T. Holstein, Optical and infrared volume absorptivity of metals. Phys. Rev. 96(2), 535–536 (1954)

    Article  ADS  Google Scholar 

  22. H.P. Chiang, P.T. Leung, W.S. Tse, The surface Plasmon enhancement effect on absorbed molecules at elevated temperatures. J. Chem. Phys. 108, 2659–2660 (1998)

    Article  ADS  Google Scholar 

  23. B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express 15(18), 11413–11426 (2007)

    Article  ADS  Google Scholar 

  24. D. Gao, C. Guan, Y. Wen, X. Zhong, L. Yuan, Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt. Commun. 313, 94–98 (2014)

    Article  ADS  Google Scholar 

  25. X. Yu, S. Zhang, H.P. Ho, P. Shum, H. Liu, D. Liu, An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis. Opt. Express 18(17), 17950–17957 (2010)

    Article  ADS  Google Scholar 

  26. Y. Liu, W. Chen, H. Yu, R. Gassino, A. Braglia, M. Olivero, G. Perrone, A. Vallan, All-fiber probe for laser-induced thermotherapy with integrated temperature measurement capabilities. Spie Bios 9317, 93170W–93170W-7 (2015)

    Google Scholar 

  27. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. Deimling, N. Waldoefner, R. Felix, A. Jordan, Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81(1), 53–60 (2007)

    Article  Google Scholar 

  28. Z. Zhao, H. Li, M. Wu, H. Wu, Temperature autocontrol and stabilization in the thermotherapy of tumors. Prog. Biochem. Biophys. 24(6), 504–506 (1997)

    Google Scholar 

  29. C.A. Sawyer, A.H. Habib, K. Miller, N. Kelly, C.L. Ondeck, M.E. McHenry, Modeling of temperature profile during magnetic thermotherapy for cancer treatment. J. Appl. Phys. 105(7), 07B320–07B320-3 (2009)

    Article  Google Scholar 

  30. A.P. Qian, G.R. Hua, Z.Y. Qian, Simulation and experimental study on temperature field in tumor during laser induced thermotherapy. Wit Trans. Model. Simul. 263(3Pt1), 1371–1380 (2014)

    Article  Google Scholar 

  31. Y. Zhang, Z. Qian, J. Guo, G. Hu, J. Zhao, Simulation on temperature distribution of effective lesion area for tumor microwave ablation thermotherapy. Acta Biophys. Sin. 28(9), 763 (2012)

    Article  Google Scholar 

  32. S.J. Qiu, Y. Chen, F. Xu, Y.Q. Lu, Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37(5), 863–865 (2012)

    Article  ADS  Google Scholar 

  33. H. Esmaeilzadeh, E. Arzi, F. Légaré, A. Hassani, Boundary integral method to calculate the sensitivity temperature error of microstructured fibre plasmonic sensors. J. Phys. D Appl. Phys. 46(32), 325103 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work jointly was jointly supported by the National Natural Science Foundation of China (Grant Number 51474069), China Postdoctoral Science Foundation funded project (Grant Number 2016M591510), Natural Science Foundation of Heilongjiang Province (Grant Number E2017010), as well as City University of Hong Kong Applied Research Grant (ARG) (Number 9667122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Famei Wang or Zhijie Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Sun, Z., Sun, T. et al. Highly sensitive PCF-SPR biosensor for hyperthermia temperature monitoring. J Opt 47, 288–294 (2018). https://doi.org/10.1007/s12596-018-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-018-0468-8

Keywords

Navigation