Skip to main content
Log in

Application of TiO2/SnO2 nanoparticles in photoluminescence based fast ammonia gas sensing

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the present research work we reported the highly dispersible TiO2/SnO2 nanoparticles produced via a simple aqueous solution growth technique with ~50 nm average grain size. The surface morphology of the material have been studied by using scanning electron (SEM) and atomic force microscopes (AFM). Using photoluminescence, interaction between ammonia gas and TiO2/SnO2 (60:40 composition) nanoparticles were investigated. The material shows average significant increment in the PL intensity with no shifting in peak, which conform its tremendous applicability in optical gas sensor to detect ammonia gas (20 ppm) using photoluminescence technique. The gas sensing was systematically performed through photoluminescence spectrometer for different concentration of ammonia at room temperature. The response and recovery time of these samples are found to be in the range of 12  and 50 s respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci.: Mater. Electron 25, 730–735 (2014)

    Google Scholar 

  2. A. Umar, Edited Metal Oxide Nanostructures and their applications (American Scientific Publishers, CA, USA, 2010)

  3. S. Suresh Kumar, B. Venkatachalapathy, L. Sujatha, T. Subba Rao, T.M. Sridhar, Influence of H2S concentration on Mn sensitized Tin dioxide nanoparticles based sensor-an impedance spectroscopic investigation. Sensor Lett. 14(9), 949–954 (2016)

    Article  Google Scholar 

  4. K. Govardhan, A. Nirmala Grace, Metal/Metal Oxide Doped Semiconductor Based Metal Oxide Gas Sensors—A Review. Sensor Lett. 14(8), 741–750 (2016)

    Article  Google Scholar 

  5. Z. Fozia, Haque and Padmini Pandey, light harvesting in dye-sensitised solar cells with advance in the design of dyes. Rev. Adv. Sci. Eng. 3, 320–330 (2014)

    Article  Google Scholar 

  6. Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014)

    Article  Google Scholar 

  7. H.J. Kim, J.W. Yoon, K.I. Choi, H.W. Jang, A. Umar, J.H. Lee, Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5(15), 7066–7073 (2013)

    Article  ADS  Google Scholar 

  8. B.S. Khened, M.V.N. Ambika Prasad, M. Sasikala, Synthesis, characterization and liquid petroleum gas sensing of ZnFe2O4 nanoribbons doped polyaniline nanocomposites. Sensor Lett. 14(8), 817–823 (2016)

    Article  Google Scholar 

  9. I. Madhi, B. Bouzid, B. Bessaïs, Effect of annealing temperature and Sn doping on structural, morphological and NO2 detection properties of nanostructured ZnO thin films. Sensor Lett. 14(4), 389–395 (2016)

    Article  Google Scholar 

  10. M.K. Mishra, N. Singh, V. Pandey, F.Z. Haque, Synthesis of SnO2 nanoparticles and its application in sensing ammonia gas through photoluminescence. J. Adv. Phy. 5(1), 8–12 (2016)

    Article  Google Scholar 

  11. R.K. Kumar, M. Husain, Structural properties of SnO2 nanostructures grown by rapid thermal chemical vapour deposition at lower temperature. Mater. Focus 3, 415–420 (2014)

    Article  Google Scholar 

  12. S. Vadivel, G. Rajarajan, Effect of Mg doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J. Mater. Sci. 26, 3155–3162 (2015)

    Google Scholar 

  13. K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas sensing materials: review and issues. Sensors 10(4), 4083–4099 (2010)

    Article  MathSciNet  Google Scholar 

  14. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667 (2005)

    Article  ADS  Google Scholar 

  15. M.M. Bagheri-Mohagheghi, M. Shokooh-Saremi, The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique. J. Phys. D: Appl. Phys. 37, 1248 (2004)

    Article  ADS  Google Scholar 

  16. A. Roy, S. Dige, G.G. Umarji, M.D. Shinde, S.B. Rane, U.P. Mulik, D.P. Amalnerkar, R. Chauhan, Solvothermal syntheses of cadmium sulfide nanoparticles with varying concentration of ammonia and reaction time and their effect on optical properties. Mater. Focus 4, 142–149 (2015)

    Article  Google Scholar 

  17. D. Xiang, H. Lin, L. Li, X. Chen, J. Ma, F. Qu, Flower-shaped SnO2 nanostructures for gas sensor application. Mater. Focus 3, 325–330 (2014)

    Article  Google Scholar 

  18. A. Umar, M.M. Rahman, S.H. Kim, Y.B. Hahn, ZnO nanonails: synthesis and their application as glucose biosensor. J. Nanosci. Nanotechnol. 8(6), 3216–3221 (2008)

    Article  Google Scholar 

  19. J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, L. Liao, J. Mater. Chem. 19, 1859 (2009)

    Article  Google Scholar 

  20. V. Pandey, N. Singh, M.M. Malik, and F.Z. Khan,  SnO2, SnO2:Mg and SnO2:Ni Nanoparticles Based Luminescence Ammonia Sensors, Mater. Focus 6(3), 359–363 (2017) 

    Article  Google Scholar 

  21. V.V. Malyshev, A.V. Pislyakov, Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium. Sens. Actuat. B 134, 913–921 (2008)

    Article  Google Scholar 

  22. T. Jayasree, M. Bobby, S. Muttan, Sensors for detecting ammonia from the exhaled breath of renal disorder patients. Sensor Lett. 14(10), 1003–1008 (2016)

    Article  Google Scholar 

  23. M. Abaker, A. Umar, S. Baskoutas, G.N. Dar, S.A. Zaidi, S.A. Al-Sayari, A highly sensitive ammonia chemical sensor based on α-Fe2O3 nanoellipsoids. J. Phys. D Appl. Phys. 44(42), 425401 (2011)

    Article  Google Scholar 

  24. S.S. Taimur Athar, M. Shafi, A. Ahmed Khan, Low-temperature growth and properties of NiO nano sheets decorated with small NiO nano rods via soft chemical process. Mater. Focus 3, 378–381 (2014)

    Article  Google Scholar 

  25. P. Rajeshwaran, A. Sivarajan, Influence of Mn doping on structural, optical and acetone gas sensing properties of SnO2 nanoparticles by a novel microwave technique. J. Mater. Sci.: Mater. Electron 26, 539–546 (2015)

    Google Scholar 

  26. F.Z. Haque, N. Singh, P. Pandey, M.R. Parra, Study of zinc oxide nano/micro rods grown on ITO and glass substrates. Optik-Int. J. Light Electron Opt. 124(20), 4167–4171 (2013)

    Article  Google Scholar 

  27. N. Singh, F. Syed, F.Z. Haque, Ionic liquid controlled growth of zinc oxide nano particles and their fluorescence study in the presence of NH3 gas. Mater. Sci. Res. India 11(1), 27–34 (2014)

    Article  Google Scholar 

  28. R.H. Bari, S.B. Patil, A.R. Bari, Chemically sprayed SnO2-ZnO nanocomposites thin films for ethanol gas sensor. J. Nanoeng. Nanomanuf. 3, 1–5 (2013)

    Article  Google Scholar 

  29. W. Izydorczyk, B. Adamowicz, Computer analysis of oxygen adsorption at SnO2 thin films. Optica Applicata. 37(4), (2007)

  30. S. Jagtap, K.R. Priolkar, Investigation on flower like ZnO and effect of processing parameters on ‘green’ ZnO gas sensors. J. Nanoeng. Nanomanuf. 4, 221–229 (2014)

    Article  Google Scholar 

  31. M. Acuautla, S. Bernardini, M. Bendahan, L. Gallais. Ammonia sensing properties of ZnO nanoparticles on flexible substrate in Proc.8th Int. Con.on Sensing Technology, Liverpool, UK, Sep. 2–4 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fozia Z. Haque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Pandey, V., Singh, N. et al. Application of TiO2/SnO2 nanoparticles in photoluminescence based fast ammonia gas sensing. J Opt 46, 199–203 (2017). https://doi.org/10.1007/s12596-017-0404-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-017-0404-3

Keywords

Navigation