Skip to main content
Log in

Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock

  • Petroleum, Natural Gas Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The petrophysical property of mudstone often transforms from ductile to brittle in the process of burial-uplift. The deformation mechanism of fault in brittle and ductile mudstone caprock is different, which leads to the formation of different types of fault zone structure. Different methods are required to evaluate the sealing mechanism of those fault zones. Based on the caprock deformation mechanism, fault sealing mechanism, quantitative evaluation method of vertical fault sealing capacity is put forward in this study. Clay smear is formed in the process of plastic deformation and its continuity controls the sealing capacity of fault. The outcrop and oil field data have confirmed that when sealing parameter SSF is less than 4–7, the clay smear becomes discontinuous and then oil and gas go through the caprock and migrate vertically. Quantities of fractures are formed in mudstone in the process of brittle deformation. The fracture density increases with the increase of the fault displacement. When the fractures are connected, oil and gas go through the caprock and migrate vertically. The connectivity of fault depends on the displacement and the thickness of caprock. On the basis of the above, a method is put forward to quantify the connectivity of fault with the juxtaposition thickness of caprock after faulting. The research on the juxtaposition thickness of caprock after faulting of the member II of Dongying Formation in Nanpu depression and the distribution of oil and gas indicates when the juxtaposition thickness of caprock is less than 96.2 m, the fault becomes leaking vertically. In the lifting stage, with the releasing and unloading of the stress, the caprock becomes brittle generally and then forms through going fault which will lead to a large quantity of oil and gas migrate vertically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Anderson, R. S., 1994. Evolution of the Santa Cruz Mountains, California, through Tectonic Growth and Geomorphic Decay. Journal of Geophysical Research: Solid Earth, 99(B10): 20161–20179. https://doi.org/10.1029/94jb00713

    Article  Google Scholar 

  • Aydin, A., Eyal, Y., 2002. Anatomy of a Normal Fault with Shale Smear: Implications for Fault Seal. AAPG Bulletin, 86(8): 1367–1381

    Google Scholar 

  • Aydin, A., Myers, R., Younes, A., 1998. Faults: Seals or Migration Pathways? Yes, No, Some are but Some aren’t, and Some Faults are but only Sometimes!. American Association of Petroleum Geologists, Annual Meeting Abstract, Rio de Janeiro. No. A37

  • Bolton, A., Maltman, A., 1998. Fluid-Flow Pathways in Actively Deforming Sediments: The Role of Pore Fluid Pressures and Volume Change. Marine and Petroleum Geology, 15(4): 281–297. https://doi.org/10.1016/s0264-8172(98)00025-7

    Article  Google Scholar 

  • Burhannudinnur, M., Morley, C. K., 1997. Anatomy of Growth Fault Zones in Poorly Lithified Sandstones and Shales; Implications for Reservoir Studies and Seismic Interpretation; Part 1, Outcrop Study. Petroleum Geoscience, 3(3): 211–224. https://doi.org/10.1144/petgeo.3.3.211

    Article  Google Scholar 

  • Caillet, G., Judge, N. C., Bramwell, N. P., et al., 1997. Overpressure and Hydrocarbon Trapping in the Chalk of the Norwegian Central Graben. Petroleum Geoscience, 3(1): 33–42. https://doi.org/10.1144/petgeo.3.1.33

    Article  Google Scholar 

  • Childs, C., Walsh, J. J., Manzocchi, T., et al., 2007. Definition of a Fault Permeability Predictor from Outcrop Studies of a Faulted Turbidite Sequence, Taranaki, New Zealand. Geological Society, London, Special Publications, 292(1): 235–258. https://doi.org/10.1144/sp292.14

    Article  Google Scholar 

  • Clausen, J. A., Gabrielsen, R. H., 2002. Parameters that Control the Development of Clay Smear at Low Stress States: An Experimental Study Using Ring-Shear Apparatus. Journal of Structural Geology, 24(10): 1569–1586. https://doi.org/10.1016/s0191-8141(01)00157-2

    Article  Google Scholar 

  • Cuisiat, F., Skurtveit, E., 2010. An Experimental Investigation of the Development and Permeability of Clay Smears along Faults in Uncemented Sediments. Journal of Structural Geology, 32(11): 1850–1863. https://doi.org/10.1016/j.jsg.2009.12.005

    Article  Google Scholar 

  • Davatzes, N. C., Aydin, A., 2005. Distribution and Nature of Fault Architecture in a Layered Sandstone and Shale Sequence: An Example from the Moab Fault, Utah. Fluid Flow and Petroleum Traps. AAPG Memoir, 85: 153–180. https://doi.org/10.1306/1033722M853134

    Google Scholar 

  • Dewhurst, D. N., Jones, R. M., Hillis, R. R., et al., 2002. Microstructural and Geomechanical Characterisation of Fault Rocks from the Carnarvon and Otway Basins. The APPEA Journal, 42(1): 167–186. https://doi.org/10.1071/aj01010

    Article  Google Scholar 

  • Dong, H. Z., 2011. Oil-Gas and Reservoir-Forming Mechanism of the Damoguaihe Formation in the Southern Wuerxun Sag, Hailar Basin. Acta Petrolei Sinica, 32(1): 62–69. (in Chinese with English Abstract)

    Article  Google Scholar 

  • Doughty, P. T., 2003. Clay Smear Seals and Fault Sealing Potential of an Exhumed Growth Fault, Rio Grande Rift, New Mexico. AAPG Bulletin, 87(3): 427–444. https://doi.org/10.1306/10010201130

    Article  Google Scholar 

  • Eadington, P. J., Lisk, M., Krieger, F. W., 1996. Identifying Oil Well Sites. United States Patent, No. 5543616, [1996-08-06]

  • Egholm, D. L., Clausen, O. R., Sandiford, M., et al., 2008. The Mechanics of Clay Smearing along Faults. Geology, 36(10): 787–790. https://doi.org/10.1130/g24975a.1

    Article  Google Scholar 

  • Eichhubl, P., D’Onfro, P. S., Aydin, A., et al., 2005. Structure, Petrophysics, and Diagenesis of Shale Entrained along a Normal Fault at Black Diamond Mines, California—Implications for Fault Seal. AAPG Bulletin, 89(9): 1113–1137. https://doi.org/10.1306/04220504099

    Article  Google Scholar 

  • Faerseth, R. B., 2006. Shale Smear along Large Faults: Continuity of Smear and the Fault Seal Capacity. Journal of the Geological Society, 163: 741–751. https://doi.org/10.1144/0016-76492005-162

    Article  Google Scholar 

  • Ferrill, D. A., Morris, A. P., 2008. Fault Zone Deformation Controlled by Carbonate Mechanical Stratigraphy, Balcones Fault System, Texas. AAPG Bulletin, 92(3): 359–380. https://doi.org/10.1306/10290707066

    Article  Google Scholar 

  • Fisher, Q. J., Knipe, R. J., 2001. The Permeability of Faults within Siliciclastic Petroleum Reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18(10): 1063–1081. https://doi.org/10.1016/s0264-8172(01)00042-3

    Article  Google Scholar 

  • Fossen, H., Schultz, R. A., Rundhovde, E., et al., 2010. Fault Linkage and Graben Stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with Implications for Hydrocarbon Migration and Accumulation. AAPG Bulletin, 94(5): 597–613. https://doi.org/10.1306/10130909088

    Article  Google Scholar 

  • Fu, X. F., 2002. Fault Sealing and Fluid Migration of Overthrust in Kuche Sag: [Dissertation]. Daqing Petroleum Institute, Daqing (in Chinese with English Abstract)

    Google Scholar 

  • Fu, X. F., Chen, Z., Yan, B. Q., et al., 2013. Analysis of Main Controlling Factors for Hydrocarbon Accumulation in Central Rift Zones of the Hailar-Tamtsag Basin Using a Fault-Caprock Dual Control Mode. Science China Earth Sciences, 56(8): 1357–1370. https://doi.org/10.1007/s11430-013-4622-5

    Article  Google Scholar 

  • Fu, X. F., Dong, J., Lü, Y. F., et al., 2012a. Fault structual Characteristics of Wuerxun-Beier Depression in the Hailaer Basin and Their Rerervior-Controlling Mechanism. Acta Geologica Sinica, 86(6): 877–889. (in Chinese with English Abstract)

    Google Scholar 

  • Fu, X. F., Guo, X., Zhu, L. X., et al., 2012b. Formation and Evolution of Clay Smear and Hydrocarbon Migration and Sealing. Journal of China University of Mining and Technology, 41(1): 52–63. (in Chinese with English Abstract)

    Google Scholar 

  • Fu, X. F., Pan, G. Q., He, X. Y., et al., 2009. Lateral Sealing of Faults for Shallow Biogas in Heidimiao Formation of the Southern Daqing Placanticline. Acta Petrolei Sinica, 5: 678–684. (in Chinese with English Abstract)

    Google Scholar 

  • Gao, Y. Q., Liu, L., 2007. Time Recording of Inorganic CO2 and Petroleum Infilling in Wuerxun Depression, Hailaer Basin. Acta Sedimentologica Sinica, 4: 574–582. (in Chinese with English Abstract)

    Google Scholar 

  • Gibson, R. G., 1994. Fault-Zone Seals in Siliciclastic Strata of the Columbus Basin, Offshore Trinidad. AAPG Bulletin, 78: 1372–1385. https://doi.org/10.1306/a25feca7-171b-11d7-8645000102c1865d

    Google Scholar 

  • Gibson, R. G., 1998. Physical Character and Fluid-Flow Properties of Sandstone-Derived Fault Zones. Geological Society, London, Special Publications, 127(1): 83–97. https://doi.org/10.1144/gsl.sp.1998.127.01.07

    Article  Google Scholar 

  • Grunau, H. R., 1987. A Worldwide Look at the Cap-Rock Problem. Journal of Petroleum Geology, 10(3): 245–265. https://doi.org/10.1111/j.1747-5457.1987.tb00945.x

    Article  Google Scholar 

  • Gudehus, G., Karcher, C., 2007. Hypoplastic Simulation of Normal Faults without and with Clay Smears. Journal of Structural Geology, 29(3): 530–540. https://doi.org/10.1016/j.jsg.2006.09.011

    Article  Google Scholar 

  • Hesthammer, J., Fossen, H., 1998. The Use of Dipmeter Data to Constrain the Structural Geology of the Gullfaks Field, Northern North Sea. Marine and Petroleum Geology, 15(6): 549–573. https://doi.org/10.1016/s0264-8172(98)00028-2

    Article  Google Scholar 

  • Holland, M., Urai, J. L., van der Zee, W., et al., 2006. Fault Gouge Evolution in Highly Overconsolidated Claystones. Journal of Structural Geology, 28(2): 323–332. https://doi.org/10.1016/j.jsg.2005.10.005

    Article  Google Scholar 

  • Hou, Q. J., Feng, Z. H., Huo, Q. L., 2004. Oil Migration Model and Entrapment Epoch of North Wuerxun Depression in Hailaer Basin. Earth Science, 29(4): 397–403. (in Chinese with English Abstract)

    Google Scholar 

  • Ingram, G. M., Urai, J. L., 1999. Top-Seal Leakage through Faults and Fractures: The Role of Mudrock Properties. Geological Society, London, Special Publications, 158(1): 125–135. https://doi.org/10.1144/gsl.sp.1999.158.01.10

    Article  Google Scholar 

  • Kim, J. W., Berg, R. R., Watkins, J. S., et al., 2003. Trapping Capacity of Faults in the Eocene Yegua Formation, East Sour Lake Field, Southeast Texas. AAPG Bulletin, 87(3): 415–425. https://doi.org/10.1306/08010201129

    Article  Google Scholar 

  • Knipe, R. J., 1992. Faulting Processes and Fault Seal. Structural and Tectonic Modelling and Its Application to Petroleum Geology, 1: 325–342.

    Article  Google Scholar 

  • Knott, S. D., 1994. Fault Zone Thickness versus Displacement in the Permo-Triassic Sandstones of NW England. Journal of the Geological Society, 151(1): 17–25. https://doi.org/10.1144/gsjgs.151.1.0017

    Article  Google Scholar 

  • Koledoye, A. B., Aydin, A., May, E., 2000. Three-Dimensional Visualization of Normal Fault Segmentation and its Implication for Fault Growth. The Leading Edge, 19(7): 692–701. https://doi.org/10.1190/1.1438692

    Article  Google Scholar 

  • Koledoye, A. B., Aydin, A., May, E., 2003. A New Process-Based Methodology for Analysis of Shale Smear along Normal Faults in the Niger Delta. AAPG Bulletin, 87(3): 445–463. https://doi.org/10.1306/08010200131

    Article  Google Scholar 

  • Lehner, F. K., Pilaar, W. F., 1997. The Emplacement of Clay Smears in Synsedimentary Normal Faults: Inferences from Field Observations near Frechen, Germany. Norwegian Petroleum Society Special Publication, 7: 15–38.

    Article  Google Scholar 

  • Lindsay, N. G., Murphy, F. C., Walsh, J. J., et al., 1993. Outcrop Studies of Shale Smears on Fault Surfaces. International Association of Sedimentologists, 15: 113–123.

    Google Scholar 

  • Lü, Y. F., Sha, Z. X., Fu, X. F., et al., 2007. Quantitative Evaluation Method for Fault Vertical Sealing Ability and Its Application. Acta Petrolei Sinica, 28(5): 34–38. (in Chinese with English Abstract)

    Google Scholar 

  • Nygård, R., Gutierrez, M., Bratli, R. K., et al., 2006. Brittle-Ductile Transition, Shear Failure and Leakage in Shales and Mudrocks. Marine and Petroleum Geology, 23(2): 201–212. https://doi.org/10.1016/j.marpetgeo.2005.10.001

    Article  Google Scholar 

  • Peacock, D. C. P., Knipe, R. J., Sanderson, D. J., 2000. Glossary of Normal Faults. Journal of Structural Geology, 22(3): 291–305. https://doi.org/10.1016/s0191-8141(00)80102-9

    Article  Google Scholar 

  • Roberts, G. P., 1996. Variation in Fault-Slip Directions along Active and Segmented Normal Fault Systems. Journal of Structural Geology, 18(6): 835–845. https://doi.org/10.1016/s0191-8141(96)80016-2

    Article  Google Scholar 

  • Roberts, G. P., Gawthorpe, R. L., 1995. Strike Variation in Deformation and Diagenesis along Segmented Normal Faults: An Example from the Eastern Gulf of Corinth, Greece. Geological Society, London, Special Publications, 80(1): 57–74. https://doi.org/10.1144/gsl.sp.1995.080.01.03

    Article  Google Scholar 

  • Runar, N., Marte, G., Rolf, K. B., et al., 2006. Brittle-Ductile Transition, Shear Failure and Leakage in Shales and Mudrocks. Marine and Petroleum Geology, 23: 201–212. https://doi.org/10.1016/j.marpetgeo.2005.10.001

    Article  Google Scholar 

  • Schmatz, J., Vrolijk, P. J., Urai, J. L., 2010. Clay Smear in Normal Fault Zones—The Effect of Multilayers and Clay Cementation in Water-Saturated Model Experiments. Journal of Structural Geology, 32(11): 1834–1849. https://doi.org/10.1016/j.jsg.2009.12.006

    Article  Google Scholar 

  • Schowalter, T. T., 1981. Prediction of Caprock Seal Capacity: Abstract. AAPG Bulletin, 65: 987–988.

    Google Scholar 

  • Smith, D. A., 1980. Sealing and Nonsealing Faults in Louisiana Gulf Coast Salt Basin. AAPG Bulletin, 64(2): 145–172

    Google Scholar 

  • Speksnijder, A., 1987. The Structural Configuration of Cormorant Block IV in Context of the Northern Viking Graben Structural Framework. Geologieen Mijnbouw, 65: 357–379.

    Google Scholar 

  • Sperrevik, S., Færseth, R. B., Gabrielsen, R. H., 2000. Experiments on Clay Smear Formation along Faults. Petroleum Geoscience, 6(2): 113–123. https://doi.org/10.1144/petgeo.6.2.113

    Article  Google Scholar 

  • Sperrevik, S., Gillespie, P. A., Fisher, Q. J., et al., 2002. Empirical Estimation of Fault Rock Properties. Norwegian Petroleum Society Special Publications, 11: 109–125. https://doi.org/10.1016/S0928-8937(02)80010-8

    Article  Google Scholar 

  • Sun, Y. H., Zhao, B., Dong, Y. X., et al., 2013. Control of Faults on Hydrocarbon Migration and Accumulation in the Nanpu Sag. Oil & Gas Geology, 34(4): 540–549. (in Chinese with English Abstract)

    Google Scholar 

  • Takahashi, M., 2003. Permeability Change during Experimental Fault Smearing. Journal of Geophysical Research: Solid Earth, 108(B5): 1–15. https://doi.org/10.1029/2002jb001984

    Article  Google Scholar 

  • Watts, N. L., 1987. Theoretical Aspects of Cap-Rock and Fault Seals for Single- and Two-Phase Hydrocarbon Columns. Marine and Petroleum Geology, 4(4): 274–307. https://doi.org/10.1016/0264-8172(87)90008-0

    Article  Google Scholar 

  • Weber, K., Mandl, G., Pilaar, W., et al., 1978. The Role of Faults in Hydrocarbon Migration and Trapping in Nigerian Growth Fault Structures. 10th Annual Offshore Technology Conference Proceedings, 4: 2643–2653.

    Google Scholar 

  • Weber, K. J., 1997. A Historical Overview of the Efforts to Predict and Quantify Hydrocarbon Trapping Features in the Exploration Phase and in Field Development Planning. Norwegian Petroleum Society Special Publication, 7: 1–13.

    Article  Google Scholar 

  • Yielding, G., 2002. Shale Gouge Ratio-Calibration by Geohistory. Norwegian Petroleum Society Special Publications, 11: 1–15.

    Article  Google Scholar 

  • Yielding, G., Freeman, B., Needham, D. T., 1997. Quantitative Fault Seal Prediction. AAPG Bulletin, 81(6): 897–917

    Google Scholar 

  • Younes, A. I., Aydin, A., 2001. Comparison of Fault Sealing by Single and Multiple Layers of Shale: Outcrop Examples from the Gulf of Suez, Egypt. AAPG Annual Meeting Program, 10: 222. https://doi.org/10.1306/61eed580-173e-11d7-8645000102c1865

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. U1562214, 41702156, 41272151), the National Science and Technology Major Project (No. 2016ZX05003-002). The authors gratefully acknowledge the Exploration and Development Research Institute of Daqing Oil Field Company Ltd. for providing the original data. This paper benefited considerably from the reviewers and editors. The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0998-7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingdong Meng or Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Yan, L., Meng, L. et al. Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock. J. Earth Sci. 30, 367–375 (2019). https://doi.org/10.1007/s12583-018-0998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0998-7

Key Words

Navigation