Skip to main content
Log in

Numerical approach for thermal history modelling in multi-episodic rifting basins

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Pre-existing models for thermal history modelling have shown deficiency in explicit algorithms to establish the quantitative relationship between maturity indices and thermal gradients in some sedimentary basins that experienced multi-episodic rifting evolution. In this study, a forward and inverse combination model (FICM) is proposed to estimate the vitrinite reflectance (Ro) and thermal gradients. The forward module is used to calculate Ro values. It couples the EASY%Ro model with burial history reconstruction with consideration of thermal gradient variations during basin evolution. The inverse module reconstructs histoical thermal gradients by calibrating cmputed Ro against measured Ro data. The time-temperature series is a necessary input for both forward and inverse modules. Sample density is a profound factor influencing the accuracy of modelling results. In order to obtain satisfying outputs, a sufficient sample density is required. Thermal gradients are assumed to vary linearly between two given samples. Modelling results of case studies indicate that the sensitivity of heating time to Ro evlution is differnt with thermal gradients depending on geolgoical setting. Three difffernt districts, which include the time-sensitive area, the temperature-sensitive area and the non-sensitive area, can be recognized on the the relationship map among Ro variations, heating time and geothermal gradients. This model can be applied to reconstruct the thermal history and maturation evolution in a basin that has undergone complex multi-episodic rifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Barker, C. E., Pawlewicz, M. J., 1986. The Correlation of Vitrinite Reflectance with Maximum Temperature in Humic Organic Matter. In: Buntebarth, G., Stegena, L., eds., Paleogeothermics. Lecture Notes in Earth Sciences, Berlin. 5: 79–93

    Article  Google Scholar 

  • Beha, A., Thomsen, R. O., Littke, R., 2008. A Rapid Method of Quantifying the Resolution Limits of Heat Flow Estimates in Basin Models. Journal of Petroleum Geology, 31(2): 167–178, doi:10.1111/j.1747-5457.2008.00414.x

    Article  Google Scholar 

  • Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochemica Cosmochimica Acta, 53: 2649–2657, doi:10.1016/0016-7037(89)90136-1

    Article  Google Scholar 

  • Carr, A. D., 1999. A Vitrinite Reflectance Kinetic Model Incorporating Overpressure Retardation. Marine and Petroleum Geology, 16(4): 355–377, doi:10.1016/S0264-8172(98)00075-0

    Article  Google Scholar 

  • Ding, R. X., Wang, W., 2013. Paleotopographic Reconstruction on the Basis of Low-Temperature Thermochronological Thermal History Modelling. Journal of Earth Science, 24(4): 652–656

    Article  Google Scholar 

  • Falvey, D. A., 1974. The Development of Continental Margins in Plate Tectonic Theory. Journal of Association of Petroleumand Explosives Administration, 14: 95–106

    Google Scholar 

  • Fjeldskaar, W., Grunnaleite, I., Zweigel, J., et al., 2009. Modelled Palaeo-Temperature on Voring, Offshore Mid-Norway—The Effect of the Lower Crustal Body. Tectonophysics, 474(3–4): 544–558, doi:10.1016/j.tecto.2009.04.036

    Article  Google Scholar 

  • Galushkin, Y., Simonenkova, O., Lopatin, N., 1999. Thermal and Maturation Modelling of the Urengoy Field, West Siberian Basin: Some Special Considerations in Basin Modeling. AAPG Bulletin, 83(12): 1965–1979

    Google Scholar 

  • Hunt, J. M., Lewan, M. D., Hennet, R. J., 1991. Modelling Oil Generation with Time-Temperature Index Graphs Based on the Arrhenius Equation. AAPG Bulletin, 75(4): 795–807

    Google Scholar 

  • Huvaz, O., Karahanoglu, N., Ediger, V., 2007. The Thermal Gradient History of the Thrace Basin, NW Turkey: Correlation with Basin Evolution Processes. Journal of Petroleum Geology, 30(1): 3–23, doi:10.1111/j.1747-5457.2007.00003.x

    Article  Google Scholar 

  • Huvaz, O., Thomsen, R. O., Noeth, S., 2005. A Method for Analyzing Geothermal Gradient Histories Using the Statistical Assessment of Uncertainties in Maturity Models. Journal of Petroleum Geology, 28(2): 107–117, doi:10.1111/j.1747-5457.2005.tb00075.x

    Article  Google Scholar 

  • Karig, D., Hou, G., 1992. High-Stress Consolidation Experiments and their Geologic Implications. Journal of Geophysical Research, 97(B1): 289–300, doi:10.1029/91JB02247

    Article  Google Scholar 

  • Li, Z. X., Xu, M., Zhao, P., et al., 2013. Geothermal Regime and Hydrocarbon Kitchen Evolution in the Jianghan Basin. Science China: Earth Sciences, 56(2): 240–257, doi:10.1007/s11430-012-4462-8

    Article  Google Scholar 

  • Littke, R., Buker, C., Luckge, A., et al., 1994. A New Evaluation of Palaeo-Heat Flows and Eroded Thicknesses for the Carboniferous Ruhr Basin, Western Germany. International Journal of Coal Geology, 26(3–4): 155–183, doi:10.1016/0166-5162(94)90009-4

    Article  Google Scholar 

  • Liu, W. C., Ye, J. R., Lei, C., et al., 2011. Geothermal and Maturation Histories Modeling of the Source Rocks in the Ledong Sag, Qiongdongnan Basin. Geological Science and Technology Information, 30(6): 110–115 (in Chinese with English Abstract)

    Google Scholar 

  • McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40: 25–32, doi:10.1016/0012-821X(78)90071-7

    Article  Google Scholar 

  • Mohamed, A. Y., Iliffe, J. E., Ashcroft, W. A., et al., 2000. Burial and Maturation History of the Heglig Field Area, Muglad Basin, Sudan. Journal of Petroleum Geology, 23(1): 107–128, doi:10.1111/j.1747-5457.2000.tb00486.x

    Article  Google Scholar 

  • Mohsenian, E., Fathi-Mobarakabad, A., Sachsenhofer, R. F., et al., 2014. 3D Basin Modelling in the Central Persian Gulf, Offshore Iran. Journal of Petroleum Geology, 37(1): 55–70, doi:10.1111/jpg.12569

    Article  Google Scholar 

  • Morrow, D. W., Issler, D. R., 1993. Calculation of Vitrinite Reflectance from Thermal Histories: A Comparison of Some Methods. AAPG Bulletin, 77(4): 610–624

    Google Scholar 

  • Qiu, N. S., Chang, J., Zuo, Y. H., et al., 2012. Thermal Evolution and Maturation of Lower Paleozoic Source Rocks in the Tarim Basin, Northwest China. AAPG Bulletin, 96(5): 789–821, doi:10.1306/09071111029

    Article  Google Scholar 

  • Sclater, J. G., Christie, P. A. F., 1980. The Heat Flow through Oceanic and Continental Crust and the Heat Loss of the Earth. Reviews Geophysics and Space Physics, 18: 269–311, doi:10.1029/RG018i001p00269

    Article  Google Scholar 

  • Suzuki, N., Matsubayashi, H., Waples, D. W., 1993. A Simpler Kinetic Model of Vitrinite Reflectance. AAPG Bulletin, 77(9): 1502–1508

    Google Scholar 

  • Sweeney, J. J., Burnham, A. K., 1990. Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics. AAPG Bulletin, 74(10): 1559–1570

    Google Scholar 

  • Tang, Z. H., Wu, Y. H., He, S., 2001. An Improved Method for Calculating Paleoheat Flow from Vitrinite Reflectance Profile. Journal of Earth Sciences, 12(4): 337–342

    Google Scholar 

  • Waples, D. W., 1980. Time and Temperature in Petroleum Formation: Application of Lopatin’s Method to Petroleum Exploration. AAPG Bulletin, 64(6): 916–926

    Google Scholar 

  • Waples, D. W., 1998. Basin Modelling: How well have We done? In: Duppenbecker, S. J., Iliffe, J. E., eds. Basin Modelling: Practice and Progress. Geological Society, London. 1–14

    Google Scholar 

  • Waples, D. W., Kamata, H., Suizu, M., 1992a. The Art of Maturity Modeling Part 1: Finding a Satisfactory Geologic Model. AAPG Bulletin, 76(1): 31–46

    Google Scholar 

  • Waples, D. W., Suizu, M., Kamata, H., 1992b. The Art of Maturity Modeling. Part 2: Alternative Models and Sensitivity Analysis. AAPG Bulletin, 76(1): 47–66

    Google Scholar 

  • Xie, X. N., Müller, R. D., Li, S. T., et al., 2006. Origin of Anomalous Subsidence along the Northern South China Sea Margin and Its Relationship to Dynamic Topography. Marine and Petroleum Geology, 23: 745–765, doi:10.1016/j.marpetgeo.2006.03.004

    Article  Google Scholar 

  • Zhou, J. X., Huang, Z. L., Bao, G. P., et al., 2013. Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SW China. Journal of Earth Science, 24(4): 759–771

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinong Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, B., Xie, X. & Cui, T. Numerical approach for thermal history modelling in multi-episodic rifting basins. J. Earth Sci. 25, 519–528 (2014). https://doi.org/10.1007/s12583-014-0436-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-014-0436-4

Key Words

Navigation