Skip to main content
Log in

Infiltration experiments in layered structures of upper porous and lower fractured media

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Investigation of infiltration through unsaturated zone which consists of both porous and fractured media is important for comprehensively understanding water circulation and effectively managing groundwater resources and contamination control. Infiltration experiments for three kinds of porous-fractured layered structures were conducted with application of a rainfall simulator in this investigation. During experiments, the volumetric water contents of porous media and on the interface of porous-fractured media were monitored by moisture sensors (TDT). The infiltration rate, water amount in the profile and on the interface between the soil and the fractured bedrock, and outflow from the layered structures were analyzed to identify the effects of porous-fractured interface on water movement in the upper porous media and the effects of various kinds of porous media on infiltration in fractured rocks. It has been observed from the experiment results that the porous media and the fractured rock bear considerable reciprocal impact each other on infiltration processes and water content distribution. The results showed fractured rock prevented vertical water movement in the layered structure, and it decreases infiltration rate of layered structure and slows the process for upper porous media saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bear, J., Tsang, C. F., Marsily, C. D., 1992. Flow and Contaminant Transport in Fractured Rock. Acdemic Press Inc., San Diego

    Google Scholar 

  • Corradini, C., Melone, F., Smith, R. E., 2000. Modeling Local Infiltration for a Two-Layered Soil under Complex Rainfall Patterns. Journal of Hydrology, 237: 58–73, doi:10.1016/S0022-1694(00)00298-5

    Article  Google Scholar 

  • Doughty, C., 1999. Investigation of Conceptual and Numerical Approaches for Evaluating Moisture, Gas, Chemical, and Heat Transport in Fractured Unsaturated Rock. Journal of Contaminant Hydrology, 38: 69–106, doi:10.1016/S0169-7722(99)00012-1

    Article  Google Scholar 

  • Gerke, H. H., Badorreck, A., Einecke, M., 2009. Single- and Dual-Porosity Modeling of Flow in Reclaimed Mine Soil Cores with Embedded Lignitic Fragments. Journal of Contaminant Hydrology, 104: 90–106, doi:10.1016/j.jconhyd.2008.10.009

    Article  Google Scholar 

  • Liu, H. H., Bodvarsson, G. S., 2001. Constitutive Relations for Unsaturated Flow in a Fracture Network. Journal of Hydrology, 252(1–4): 116–125, doi:10.1016/S0022-1694(01)00449-8

    Article  Google Scholar 

  • Liu, H. H., Bodvarsson, G. S., Finsterle, S., 2002. A Note on Unsaturated Flow in Two-Dimensional Fracture Networks. Water Resources Research, 38: 1176–1185, doi:10.1029/2001WR000977

    Google Scholar 

  • Mastrocicco, M., Colombani, N., Salemi, E., et al., 2010. Numerical Assessment of Effective Evapotranspiration Grom Maize Plots to Estimate Groundwater Recharge in Lowlands. Agricultural Water Management, 97: 1389–1398, doi:10.1016/j.agwat.2010.04.005

    Article  Google Scholar 

  • Mualem, Y., 1976. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resources Research, 12: 513–522, doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  • Nicholl, M. J., Glass, R. J., Wheatcraft, S. W., 1994. Gravity Driven Infiltration Instability in Initially Dry Nonhorizontal Fractures. Water Resources Research, 30: 2533–2546, doi:10.1029/94WR00164

    Article  Google Scholar 

  • Or, D., Tuller, M., 2003. Hydraulic Conductivity of Partially Saturated Fractured Porous Media: Flow in A Cross-Section. Advances in Water Resources, 26(8): 883–898, doi:10.1016/S0309-1708(03)00051-4

    Article  Google Scholar 

  • Pirastru, M., Niedda, M., 2010. Field Monitoring and Dual Permeability Modelling of Water Flow Through Unsaturated Calcareous Rocks. Journal of Hydrology, 392: 40–53, doi:10.1016/j.jhydrol.2010.07.045

    Article  Google Scholar 

  • Ross, B., 1990. The Diversion Capacity of Capillary Barriers. Water Resources Research, 26: 2625–2629, doi:10.1029/WR026i010p02625

    Article  Google Scholar 

  • Starr, J. L., DeRoo, H. C., Frink, C. R., et al., 1978. Leaching Characteristics of a Layered Field Soil. Soil Science Society of America Journal, 42(3): 386–391, doi:10.2136/sssaj1978.03615995004200030002x

    Article  Google Scholar 

  • van Genuchten, M. T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44: 892–898, doi:10.2136/sssaj1980.03615995004400050002 x

    Article  Google Scholar 

  • Vogel, T., Gerke, H. H., Zhang, R., et al., 2000. Modeling Flow and Transport in a Two-Dimensional Dual-Permeability System with Spatially Variable Hydraulic Properties. Journal of Hydrology, 238: 78–89, doi:10.1016/S0022-1694(00)00327-9

    Article  Google Scholar 

  • Wang, B., Jin, M., Nimmo, J. R., et al., 2008. Estimating Groundwater Recharge in Hebei Plain, China under Varying Land Use Practices Using Tritium and Bromide Tracers. Journal of Hydrology, 356: 209–222, doi:10.1016/j.jhydrol.2008.04.011

    Article  Google Scholar 

  • Wang, J. S. Y., Bodvarsson, G. S., 2003. Evolution of the Unsaturated Zone Testing at Yucca Mountain. Journal of Contaminant Hydrology, 62–63: 337–360, doi:10.1016/S0169-7722(02)00161-4

    Article  Google Scholar 

  • Wang, K., Zhang, R., Hiroshi, Y., 2009. Characterizing Heterogeneous Soil Water Flow and Solute Transport Using Information Measures. Journal of Hydrology, 370: 109–121, doi:10.1016/j.jhydrol.2009.02.057

    Article  Google Scholar 

  • Weiler, M., Naef, F., 2003. Simulating Surface and Subsurface Initiation of Macropore Flow. Journal of Hydrology, 273: 139–154, doi:10.1016/S0022-1694(02)00361-X

    Article  Google Scholar 

  • Xu, T., Sonnenthal, E., Bodvarsson, G., 2003. A Reaction-Transport Model for Calcite Precipitation and Evaluation of Infiltration Fluxes in Unsaturated Fractured Rock. Journal of Contaminant Hydrology, 64: 113–127, doi:10.1016/S0169-7722(02)00089-X

    Article  Google Scholar 

  • Zhou, Q., Salve, R., Liu, H. H., et al., 2006. Analysis of a Mesoscale Infiltration and Water Seepage Test in Unsaturated Fractured Rock: Spatial Variabilities and Discrete Fracture Patterns. Journal of Contaminant Hydrology, 87: 96–122, doi:10.1016/j.jconhyd.2006.05.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Wang  (王明玉).

Additional information

This study was supported by the Major State Basic Research Development Program of China (973 Program) (No. 2010CB428804), the National Natural Science Foundation of China (No. 40972166), the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2009ZX07212-003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, M. Infiltration experiments in layered structures of upper porous and lower fractured media. J. Earth Sci. 24, 843–853 (2013). https://doi.org/10.1007/s12583-013-0378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-013-0378-2

Key Words

Navigation