Skip to main content

Advertisement

Log in

In search of alternative proteins: unlocking the potential of underutilized tropical legumes

  • Review
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Protein is one of the essential nutrients required for almost every task of a human’s cellular life. Severe protein malnutrition, which can cause a fatal outcome, is the leading cause of death for infants and children in many African and Asian countries that have little to no access to complete proteins. Complete proteins, which contain all nine amino acids essential for human health, are usually found in animal-based foods such as meat and dairy products. The overconsumption of animal-based proteins, however, can potentially increase the risk of diet-related chronic diseases. Recent years have witnessed enhanced awareness about the health benefits of substituting animal-based proteins with plant-based proteins, especially in developed countries. Nitrogen-fixing grain legumes are considered important sources of protein in many developing countries because they are generally cheaper than meat or cereals. Extensive research has been conducted on several well-known legumes, notably soybean, which is the most economically important legume worldwide. Nevertheless, many lesser-known legumes with similar nutritional properties to soybean are still underdeveloped, including winged bean, lentil, lima bean, lablab, and bambara groundnut, which are commonly grown in the tropics. Only now are these species receiving more scientific attention. This review highlights the potential of these tropical legumes as future major sources of plant-based proteins, along with the critical research areas for their improvement. We provide insights into how these underutilized legumes could help resolve the global protein crisis and address food insecurity issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abate, T., Alene, A. D., Bergvinson, D., Shiferaw, B., Silim S, Orr A., et al. (2012). Tropical grain legumes in Africa and South Asia: Knowledge and opportunities. PO Box 39063, Nairobi, Kenya: International crops research Institute for the Semi-Arid Tropics, 112.

  • Adeleke, O. R., Adiamo, O. Q., & Fawale, O. S. (2017). Nutritional, physicochemical, and functional properties of protein concentrate and isolate of newly-developed Bambara groundnut (Vigna subterrenea L.) cultivars. Food Science and Nutrition, 6(1), 229–242.

    PubMed  Google Scholar 

  • Ade-Omowaye, B. I. O., Tucker, G. A., & Smetanska, I. (2015). Nutritional potential of nine underexploited legumes in Southwest Nigeria. International Food Research Journal, 22(2), 798–806.

    CAS  Google Scholar 

  • Akibode, S., & Maredia, M. (2011). Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food and Resource Economics: Michigan State University.

  • Almeida, C., & Pedrosa-Harand, A. (2013). High macro-collinearity between lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) as revealed by comparative cytogenetic mapping. Theoretical and Applied Genetics, 126, 1909–1916.

    PubMed  Google Scholar 

  • Amarowicz, R., & Pegg, R. B. (2008). Legumes as a source of natural antioxidants. European Journal of Lipid Science and Technology, 110(10), 865–878.

    CAS  Google Scholar 

  • Amarowicz, R., Estrella, I., Hernandez, T., Robredo, S., Troszynska, A., Kosinska, A., et al. (2010). Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chemistry, 121(3), 705–711.

    CAS  Google Scholar 

  • Andrews, M., & Andrews, M. E. (2017). Specificity in legume-rhizobia symbioses. International Journal of Molecular Sciences, 18(4).

  • Araújo, S. S., Beebe, S., Crespi, M., Delbreil, B., Gonzalez, E. M., Gruber, V., et al. (2015). Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Critical Reviews in Plant Sciences, 34(13), 237–280.

    Google Scholar 

  • Aremu, M. O., Olaofe, O., & Akintayo, T. E. (2006). Chemical composition and physicochemical characteristics of two varieties of bambara groundnut (Vigna subterrenea) flours. Journal of Applied Sciences, 6(9), 1900–1903.

    CAS  Google Scholar 

  • Arise, A. K., Alashi, A. M., Nwachukwu, I. D., Malomo, S. A., Aluko, R. E., & Amonsou, E. O. (2017). Inhibitory properties of bambara groundnut protein hydrolysate and peptide fractions against angiotensin-converting enzymes, renin and free radicals. Journal of the Science of Food and Agriculture, 97(9), 2834–2841.

    CAS  PubMed  Google Scholar 

  • Arumuganathan, K., & Earle. (1991). Nuclear DNA content of some important plant species. Journal of Plant Molecular Biology, 9(3), 208–218.

    CAS  Google Scholar 

  • Azam-Ali, S., Sesay, A., Karikari, S., Massawe, F., Aguilar-Manjarrez, J., Bannayan, M., et al. (2001). Assessing the potential of an underutilized crop–a case study using bambara groundnut. Journal of Experimental Agriculture, 37(4), 433–472.

    Google Scholar 

  • Ballhorn, D. J., Kautz, S., Heil, M., & Hegeman, A. D. (2009). Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS One, 4(5), e5450.

    PubMed  PubMed Central  Google Scholar 

  • Baudoin, J.-P., Rocha, O., Degreef, J., Maquet, A., & Guarino, L. (2006). Phaseolus lunatus L. Plant Resources of Tropical Africa, 1, 141–146.

  • Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H., & Winham, D. M. (2011). Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(2), 94–103.

    CAS  PubMed  Google Scholar 

  • Becerra-Tomás, N., Diaz-Lopez, A., Rosique-Esteban, N., Ros, E., Buil-Cosiales, P., Corella, D., et al. (2018). Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clinical Nutrition, 37(3), 906–913.

    PubMed  Google Scholar 

  • Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., et al. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet, 382(9890), 427–451.

    PubMed  Google Scholar 

  • Bonaccorsi, G. (2015). Food and human behaviour: Consumption, waste and sustainability. Journal of Public Health Research, 4(2), 606.

    PubMed  PubMed Central  Google Scholar 

  • Calles, T. (2016). The international year of pulses: What are they and why are they important. Agriculture for Development, 26, 40–42.

    Google Scholar 

  • Cameron, D. G. (1988). Tropical and subtropical pasture legumes. Lablab bean (Lablab purpureus): The major leguminous forage crop. Queensland Agricultural Journal, 114, 110–113.

    Google Scholar 

  • Capstaff, N. M., & Miller, A. J. (2018). Improving yield and nutritional quality of forage crops. Frontiers in Plant Science, 9, 535.

    PubMed  PubMed Central  Google Scholar 

  • Cerny, K., & Addy, H. A. (1973). The winged bean (Psophocarpus palustris Desv.) in the treatment of kwashiorkor. British Journal of Nutrition, 29(1), 105–112.

    CAS  PubMed  Google Scholar 

  • Chacón-Sánchez, M. I., & Martínez-Castillo, J. (2017). Testing domestication scenarios of lima bean (Phaseolus lunatus L.) in Mesoamerica: Insights from genome-wide genetic markers. Frontiers in Plant Science, 8, 1551.

    PubMed  PubMed Central  Google Scholar 

  • Chai, H. H., Massawe, F., & Mayes, S. (2016). Effects of mild drought stress on the morpho-physiological characteristics of a bambara groundnut segregating population. Euphytica, 208(2), 225–236.

    CAS  Google Scholar 

  • Chapman, M. A. (2015). Transcriptome sequencing and marker development for four underutilized legumes. Applications in Plant Science, 3(2).

    Google Scholar 

  • Cheng, A. (2018). Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Science, 269, 136–142.

    CAS  PubMed  Google Scholar 

  • Cheng, A., Chai, H. H., Ho, W. K., Bamba, A. S. A., Feldman, A., Kendabie, P., et al. (2017). Molecular marker technology for genetic improvement of underutilised crops. In S. Abdullah, H. Chai-Ling, & C. Wagstaff (Eds.), Crop improvement (pp. 47–70). Cham: Springer.

    Google Scholar 

  • Cohen, A. L., & Crowder, D. W. (2017). The impacts of spatial and temporal complexity across landscapes on biological control: A review. Current Opinion in Insect Science, 20, 13–18.

    PubMed  Google Scholar 

  • Dansi, A., Vodouhe, R., Azokpota, P., Yedomonhan, H., Assogba, P., Adjatin, A., et al. (2012). Diversity of the neglected and underutilized crop species of importance in Benin. Scientific World Journal, 2012, 932947.

    CAS  PubMed  Google Scholar 

  • De Gavelle, E., Huneau, J. F., Bianchi, C. M., Verger, E. O., & Mariotti, F. (2017). Protein adequacy is primarily a matter of protein quantity, not quality: Modeling an increase in plant:Animal protein ratio in French adults. Nutrients, 9, 1333.

    PubMed Central  Google Scholar 

  • De Jager, I., Abizari, A., Douma, J. C., Giller, K. E., & Brouwer, I. D. (2017). Grain legume cultivation and children’s dietary diversity in smallholder farming households in rural Ghana and Kenya. Food Security, 9(5), 1053–1071.

    Google Scholar 

  • Delgado, C. L. (2003). Rising consumption of meat and milk in developing countries has created a new food revolution. The Journal of Nutrition, 133(11), 3907–3910.

    Google Scholar 

  • Dheer, M., Sharma, R. A., Gupta, V. P., & Punia, S. S. (2014). Cytomorphological investigations in colchicine-induced polyploids of Lablab purpureus (L.) sweet. Indian Journal of Biotechnology, 13, 347–355.

    Google Scholar 

  • Dhillon, P. K., & Tanwar, B. (2018). Rice bean: A healthy and cost-effective alternative for crop and food diversity. Food Security, 10(3), 525–535.

    Google Scholar 

  • Dita, M. A., Rispail, N., Prats, E., Rubiales, D., & Singh, K. B. (2006). Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 147, 12.

    Google Scholar 

  • Dwivedi, S. L., Lammerts van Bueren, E. T., Ceccarelli, S., Grando, S., Upadhyaya, H. D., & Ortiz, R. (2017). Diversifying food systems in the pursuit of sustainable food production and healthy diets. Trends in Plant Science, 10, 842–856.

    Google Scholar 

  • Ebert, A. W. (2014). Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability, 6(1), 319–335.

    Google Scholar 

  • Erskine, W., Sarker, A., & Kumar, S. (2011). Crops that feed the world 3. Investing in lentil improvement toward a food secure world. Food Security, 3, 127–139.

    Google Scholar 

  • FAO, (2013). The state of food insecurity in the world. The multiple dimensions of food security. Rome, FAO.

  • FAO (2018). FAO, IFAD, UNICEF, WFP and WHO. 2018. The state of food security and nutrition in the world 2018. Building climate resilience for food security and nutrition. Rome, FAO.

  • Fisher, C. G., & Garnett, T. (2016). Plates, pyramids, planet developments in national healthy and sustainable dietary guidelines: A state of play assessment. Rome: FAO.

    Google Scholar 

  • Fox, N., & Ward, K. J. (2008). You are what you eat? Vegetarianism, health and identity. Social Science and Medicine, 66(12), 2585–2595.

    PubMed  Google Scholar 

  • Foyer, C. H., Nguyen, H., & Lam, H. M. (2019). Legumes - the art and science of environmentally sustainable agriculture. Plant, Cell, and Environment, 42(1), 1–15.

    CAS  Google Scholar 

  • Ganesan, K., & Xu, B. (2017). Polyphenol-rich lentils and their health promoting effects. International Journal of Molecular Sciences., 18(11), 2390.

    PubMed Central  Google Scholar 

  • Gepts, P., Beavis, W. D., Brummer, E. C., Shoemaker, R. C., Stalker, H. T., Weeden, N. F., et al. (2005). Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiology, 137(4), 1228–1235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    CAS  PubMed  Google Scholar 

  • Gonné, S., Félix-Alain, W., & Benoît, K. B. (2013). Assessment of twenty bambara groundnut (Vigna subterranea (L.) Verdcourt) landraces using quantitative morphological traits. International Journal of Plant Research, 3(3), 39–45.

    Google Scholar 

  • Gorissen, S., Crombag, J., Senden, J., Waterval, W., Bierau, J., Verdijk, L. B., & van Loon, L. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids, 50(12), 1685–1695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock, J. F. (2012). Plant evolution and the origin of crop species. CABI. 245 pp.

  • Heller, J. (1997). Bambara groundnut: Vigna subterranea (l.) Verdc. Promoting the conservation and use of under-utilized and neglected crops, Zimbabwe. IPGRI.

  • Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods, 6(7), 53.

    PubMed Central  Google Scholar 

  • Herforth, A., & Ahmed, S. (2015). The food environment, its effects on dietary consumption, and potential for measurement within agriculture-nutrition interventions. Food Security, 7(3), 505–520.

    Google Scholar 

  • Hossain, S., Ahmed, R., Bhowmick, S., Mamun, A. A., & Hashimoto, M. (2016). Proximate composition and fatty acid analysis of Lablab purpureus (L.) legume seed: Implicates to both protein and essential fatty acid supplementation. Springerplus, 5(1), 1899.

    PubMed  PubMed Central  Google Scholar 

  • Hughes, G. J., Kress, K. S., Armbrecht, E. S., Mukherjea, R., & Mattfeldt-Beman, M. (2014). Initial investigation of dietitian perception of plant-based protein quality. Food Science and Nutrition, 2(4), 371–379.

    PubMed  Google Scholar 

  • Hymowitz, T., & Boyd, J. (1977). Origin, ethnobotany and agricultural potential of the winged bean - Psophocarpus tetragonolobus. Economic Botany, 31(2), 180–188.

    Google Scholar 

  • Ibrahim, M. A. R., Dorina, M., & Abdelrazek, I. (2014). How rural agricultural development projects (animal production) can use projects benefits for improving the economics states of farmers. Proceedia Economics and Finance, 8, 484–489.

    Google Scholar 

  • Jaffe, W. G., & Korte, R. (1976). Nutritional characteristics of the winged bean in rats. Nutrition Reports International, 14(4), 449–455.

    CAS  Google Scholar 

  • Jayalath, V. H., de Souza, R. J., Sievenpiper, J. L., Ha, V., Chiavaroli, L., Mirrahimi, A., et al. (2014). Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. American Journal of Hypertension, 27(1), 56–64.

    PubMed  Google Scholar 

  • Jenkins, D. J., Kendall, C. W., Augustin, L. S., Mitchell, S., Sahye-Pudaruth, S., Blanco Mejia, S., et al. (2012). Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: A randomized controlled trial. Archives of Internal Medicine, 172(21), 1653–1660.

    CAS  PubMed  Google Scholar 

  • Johnson, C. R., Thavarajah, D., Combs, G. F., Jr., & Thavarajah, P. (2013). Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Research International, 51, 107–113.

    CAS  Google Scholar 

  • Joyce, A., Dixon, S., Comfort, J., & Hallet, J. (2012). Reducing the environmental impact of dietary choice: Perspectives from a behavioural and social change approach. Journal of Environmental and Public Health, 2012, 1–7.

    Google Scholar 

  • Kadam, S. S., Salunkhe, D. K., & Luh, B. S. (1984). Winged bean in human nutrition. C R C Critical Reviews in Food Science and Nutrition, 21(1), 1–40.

    CAS  Google Scholar 

  • Karkute, S. G., Singh, A. K., Gupta, O. P., Singh, P. M., & Singh, B. (2017). CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science, 8, 1635.

    PubMed  PubMed Central  Google Scholar 

  • Kay, D. E. (1979). Hyacinth bean - food legumes. Crop and product digest no. 3. Tropical Products Institute, xvi, 184–196.

    Google Scholar 

  • Khan, T. N. (1976). Papua New Guinea: A Centre of genetic diversity in winged bean (Psophocarpus tetragonologus (L.) DC.). Euphytica, 25, 693–706.

    Google Scholar 

  • Khorramdelazad, M., Bar, I., Whatmore, P., Smetham, G., Bhaaskaria, V., Yang, Y., et al. (2018). Transcriptome profiling of lentil (Lens culinaris) through the first 24 hours of Ascochyta lentis infection reveals key defence response genes. BMC Genomics, 19(1), 108.

    PubMed  PubMed Central  Google Scholar 

  • Kumar, J., Thavarajah, D., Kumar, S., Sarker, A., & Singh, N. P. (2018). Analysis of genetic variability and genotype × environment interactions for iron and zinc content among diverse genotypes of lentil. Journal of Food Science and Technology, 55(9), 3592–3605.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacerda, R. R., do Nascimento, E. S., de Lacerda, J. T. J. G., da Silva, P. L., Rizzi, C., Bezerra, M. M., et al. (2017). Lectin from seeds of a Brazilian lima bean variety (Phaseolus lunatus L. var. cascavel) presents antioxidant, antitumour and gastroprotective activities. International Journal of Biological Macromolecules, 95, 1072–1081.

    PubMed  Google Scholar 

  • Lepcha, P., Egan, A. N., Doyle, J. J., & Sathyanarayana, N. (2017). A review on current status and future prospects of winged bean (Psophocarpus tetragonolobus) in tropical agriculture. Plant Foods for Human Nutrition, 72(3), 225–235.

    PubMed  Google Scholar 

  • Lewis, G. P. (2005). Legumes of the world. Royal Botanic Gardens Kew.

  • Li, J., & Mao, Q. Q. (2017). Legume intake and risk of prostate cancer: A meta-analysis of prospective cohort studies. Oncotarget, 8(27), 44776–44784.

    PubMed  PubMed Central  Google Scholar 

  • Li, F., Cao, D., Liu, Y., Yang, T., & Wang, G. (2015). Transcriptome sequencing of lima bean (Phaseolus lunatus) to identify putative positive selection in legumes. International Journal of Molecular Sciences, 16(7), 15172–15187.

    PubMed  PubMed Central  Google Scholar 

  • Lonnie, M., Hooker, E., Brunstrom, J. M., Corfe, B. M., Green, M. A., Watson, A. W., et al. (2018). Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients, 10, 360.

    PubMed Central  Google Scholar 

  • Maass, B. L., Robotham, O., & Chapman, M. A. (2016). Evidence for two domestication events of hyacinth bean (Lablab purpureus (L.) sweet): A comparative analysis of population genetic data. Genetic Resources and Crop Evolution, 64(6), 1221–1230.

    Google Scholar 

  • Mabhaudhi, T., Chibarabada, T. P., Chimonyo, V. G. P., Murugani, V. G., Pereira, L. M., Sobratee, N., et al. (2019). Mainstreaming underutilized indigenous and traditional crops into food systems: A south African perspective. Sustainability, 11, 172.

    Google Scholar 

  • Maphosa, Y., & Jideani, V. A. (2017). The role of legumes in human nutrition. Functional food - improve health through adequate food. IntechOpen.

  • Massawe, F., Mayes, S., & Cheng, A. (2016). Crop diversity: An unexploited treasure trove for food security. Trends in Plant Science, 21(5), 365–368.

    CAS  PubMed  Google Scholar 

  • Messina, M. J. (1999). Legumes and soybeans: Overview of their nutritional profiles and health effects. The American Journal of Clinical Nutrition, 70(3), 439–450.

    Google Scholar 

  • Mubaiwa, J., Fogliano, V., Chidewe, C., & Linnemann, A. R. (2018). Bambara groundnut (Vigna subterranea (L.) Verdc.) flour: A functional ingredient to favour the use of an unexploited sustainable protein source. PLoS One, 13(10), e0205776.

    PubMed  PubMed Central  Google Scholar 

  • Muhammad, Y. Y., Mayes, S., & Massawe, F. (2016). Effects of short-term water deficit stress on physiological characteristics of Bambara groundnut (Vigna subterranea (L.) Verdc.). South African Journal of Plant Soil & Tillage Research, 33(1), 51–58.

    Google Scholar 

  • Murphy, A. M., & Colucci, P. E. (1999). A tropical forage solution to poor quality ruminant diets: A review of Lablab purpureus. Livestock Research for Rural Development, 11(2), 1999.

    Google Scholar 

  • Musa, M., Massawe, F., Mayes, S., Alshareef, I., & Singh, A. (2016). Nitrogen fixation and N-balance studies on bambara groundnut (Vigna subterranea L. Verdc) landraces grown on tropical acidic soils of Malaysia. Communications in Soil Science and Plant Analysis, 47(4), 533–542.

    CAS  Google Scholar 

  • National Research Council (US) (1975). The winged bean: a high-protein crop for the tropics (second edition). Washington, D.C. National Academies.

  • Nwokolo, E. (1996). Lima bean (Phaseolus lunatus L.). In E. Nwokolo & J. Smartt (Eds.), Food and feed from legumes and Oilseeds. Boston: Springer.

    Google Scholar 

  • Padulosi, S., Hodgkin, T., Williams, J.T., & Haq, N. (2002). Underutilised crops: trends, challenges and opportunities in the twenty-first Century. In: Engels, J., Rao, V. R., & Jackson, M. (eds.). Managing plant genetic diversity. CAB International, 323–338 pp.

  • Padulosi, S., Heywood, V., Hunter, D., & Jarvis, A. (2011). Underutilized species and climate change: Current status and outlook. Crop Adaptation to Climate Change, 507–521.

  • Parmar, A. M., Singh, A. P., Dhillon, N. P. S., & Jamwal, M. (2013). Genetic variability of morphological and yield traits in Dolichos bean (Lablab purpureus L.). African Journal of Agricultural Research, 8(12), 1022–1027.

    Google Scholar 

  • Pighin, D., Pazos, A., Chamorro, V., Paschetta, F., Cunzolo, S., Godoy, F., et al. (2016). A contribution of beef to human health: A review of the role of the animal production systems. The Scientific World Journal, 2016, 1–10.

    Google Scholar 

  • Pimentel, D., & Pimentel, M. (2003). Sustainability of meat-based and plant-based diets and the environment. The American Journal of Clinical Nutrition, 78(3), 660–663.

    Google Scholar 

  • Polak, R., Phillips, E. M., & Campbell, A. (2015). Legumes: Health benefits and culinary approaches to increase intake. Clinical Diabetes, 33(4), 198–205.

    PubMed  PubMed Central  Google Scholar 

  • Rahman, M. M., Islam, A. M., Azirun, S. M., & Boyce, A. N. (2014). Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice. The Scientific World Journal, 490, 841–490,841.

    Google Scholar 

  • Rao, S., Chinkwo, K., Santhakumar, A., & Blanchard, C. (2018). Inhibitory effects of pulse bioactive compounds on cancer development pathways. Diseases, 6(3), 72.

    CAS  PubMed Central  Google Scholar 

  • Robotham, O., & Chapman, M. (2017). Population genetic analysis of hyacinth bean (Lablab purpureus (L.) Sweet, Leguminosae) indicates an East African origin and variation in drought tolerance. Genetic Resources and Crop Evolution, 64(1), 139–148.

    CAS  Google Scholar 

  • Ruiz, R. G., Price, K. R., Arthur, A. E., Rose, M. E., Rhodes, M. J. C., & Fenwick, R. G. (1996). Effect of soaking and cooking on the saponin content and composition of chickpeas (Cicer arietinum) and lentils (Lens culinaris). Journal of Agricultural and Food Chemistry, 44(6), 1526–1530.

    CAS  Google Scholar 

  • Rumpold, B. A., & Schluter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1–11.

    CAS  Google Scholar 

  • Rungnoi, O., Suwanprasert, J., Somta, P., & Srinives, P. (2012). Molecular genetic diversity of bambara groundnut (Vigna subterranea L. Verdc.) revealed by RAPD and ISSR marker analysis. SABRAO Journal of Breeding and Genetics, 44, 87–101.

    Google Scholar 

  • Samac, D. A., & Graham, M. A. (2007). Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective. Plant physiology, 144(2), 582–587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaran, S., Khot, L. R., Quiros, J., Vandemark, G. J., & McGee, R. J. (2016). UAV-based high-throughput phenotyping in legume crops. Proceeding SPIE 9866, Autonomous Air and Ground Sensing Systems for Optimization and Phenotyping. https://doi.org/10.1117/12.2228550.

  • Seidu, K. T., Osundahunsi, O., Olaleye, M., & Oluwalana, I. (2014). Chemical composition, phytochemical constituents and antioxidant potentials of lima bean seeds coat. Annual Review of Food Science and Technology, 15, 288–298.

    CAS  Google Scholar 

  • Shaahu, D. K., Kaankuka, F. G., & Okpanachi, U. (2015). Proximate, amino acid, anti-nutritional factor and mineral composition of different varieties of raw lablab purpureus seeds. International Journal of Scientific and Technology Research, 4(4), 157–161.

    Google Scholar 

  • Sharma, R., Nguyen, T. T., & Grote, U. (2018). Changing consumption patterns - drivers and the environmental impact. Sustainability, 10, 4190.

    Google Scholar 

  • Siddhuraju, P., Makkar, H. P. S., & Becker, K. (2002). The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry, 78(2), 187–205.

    CAS  Google Scholar 

  • Singh, M. (2018). Lentils: Potential resources for enhancing genetic gains. Academic Press.

  • Singh, K. M., & Singh, A. (2014). Lentil in India: An overview. Germany: University Library of Munich.

    Google Scholar 

  • Singh, B., Singh, J. P., Shevkani, K., Singh, N., & Kaur, A. (2017a). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, 54(4), 858–870.

    CAS  PubMed  Google Scholar 

  • Singh, A., Sharma, V. K., Dikshit, H. K., Singh, D., Aski, M., Prakash, P., et al. (2017b). Microsatellite marker-based genetic diversity analysis of elite lentil lines differing in grain iron and zinc concentration. Journal of Plant Biochemistry and Biotechnology, 26(2), 199–207.

    CAS  Google Scholar 

  • Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(2).

  • Tiwari, N., Ahmed, S., Kumar, S., & Sarker, A. (2018). Fusarium wilt: a killer disease of lentil. In: Fusarium-plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers. IntechOpen.

  • USDA Food Composition Database. (2019) https://ndb.nal.usda.gov/ndb/

  • Vatanparast, M., Shetty, P., Chopra, R., Doyle, J. J., Sathyanarayana, N., & Egan, A. N. (2016). Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Scientific Reports, 6, 29070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldman, K. B., Ortega, D. L., Richardson, R. B., Clay, D. C., & Snapp, S. (2016). Preferences for legume attributes in maize-legume cropping systems in Malawi. Food Security, 8(6), 1087–1099.

    Google Scholar 

  • Wang, Y., Wang, Z., Fu, L., Chen, Y., & Fang, J. (2013). Legume consumption and colorectal adenoma risk: a meta-analysis of observational studies. PloS one, 8(6), e67335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Wang, L., Zhou, Y., & Duanmu, D. (2017). Use of CRISPR/Cas9 for symbiotic nitrogen fixation research in legumes. Progress in Molecular Biology and Translational Science, 149, 187–213.

    PubMed  Google Scholar 

  • Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 9, 313.

    PubMed  PubMed Central  Google Scholar 

  • Waters-Bayer, A., & Bayer, W. (1992). The role of livestock in rural economy. Nomadic Peoples, 31, 3–18.

    Google Scholar 

  • Wong, Q. N., Massawe, F., & Mayes, S. (2015). Improving winged bean (Psophocarpus tetragonolobus) productivity: an analysis of the determinants of productivity. Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2015.1102.9

  • Yang, T. C., Sahota, P., Pickett, K. E., & Bryant, M. (2018a). Association of food security status with overweight and dietary intake: exploration of White British and Pakistani-origin families in the Born in Bradford cohort. Nutrition Journal, 17(1), 48.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S., Grall, A., & Chapman, M. A. (2018b). Origin and diversification of winged bean (Psophocarpus tetragonolobus (L.) DC.), a multipurpose underutilized legume. American Journal of Botany, 105(5).

  • Yao, D. N., Kouassi, K. N., Erba, D., Scazzina, F., Pellegrini, N., & Casiraghi, M. C. (2015). Nutritive evaluation of the bambara groundnut Ci12 landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] produced in Côte d’Ivoire. International Journal of Molecular Sciences, 16(9), 21,428–21,441.

    CAS  Google Scholar 

  • Zhang, B., Deng, Z., Tang, Y., Chen, P., Liu, R., Ramdath, D. D., et al. (2014). Fatty acid, carotenoid and tocopherol compositions of 20 Canadian lentil cultivars and synergistic contribution to antioxidant activities. Food Chemistry, 161, 296–304.

    CAS  PubMed  Google Scholar 

  • Zheng, Z., Henneberry, S. R., Zhao, Y., & Gao, Y. (2015). Income growth, urbanization, and food demand in China. In: 2015 AAEA & WAEA Joint Annual Meeting, California.

  • Zhou, J. F., Pavek, M. J., Shelton, S. C., Holden, Z. J., & Sankaran, S. (2016). Aerial multispectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127, 406–412.

    Google Scholar 

  • Zohary, D. (1972). The wild progenitor and the place of origin of the cultivated lentil Lens culinaris. Economic Botany, 26, 326–332.

    Google Scholar 

  • Zohary, D. (1999). Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genetic Resources and Crop Evolution, 46(2), 133–142.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Malaya and the Ministry of Education, Malaysia (Project Numbers: BK070-2017 and FP018-2018A]. The funders had no role in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Acga Cheng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, A., Raai, M.N., Zain, N.A.M. et al. In search of alternative proteins: unlocking the potential of underutilized tropical legumes. Food Sec. 11, 1205–1215 (2019). https://doi.org/10.1007/s12571-019-00977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-019-00977-0

Keywords

Navigation