Skip to main content
Log in

Neuronal images of the putamen in the adult human neostriatum: a revised classification supported by a qualitative and quantitative analysis

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

A qualitative analysis of the morphology of human putamen nerve cells involves a detailed description of the structure and features of neurons and, accordingly, their classification into already defined classes and types. In our sample of 301 neurons, 64.78 % (195) were spiny and 35.22 % (106) aspiny cells. By analyzing cell bodies and dendritic trees, we subdivided spiny cells into two types (I and II) and aspiny cells into three types (III, IV and V). Our sample of neurons, classified according to the previously described scheme, consisted of 80 type I, 115 type II, 16 type III, 42 type IV and 48 type V nerve cells. In the present study, after qualitative analysis of microscopic images of the Golgi impregnated neurons of the putamen, we measured/quantified five morphological properties, i.e., the sizes of the soma and dendritic field, shape of the neuron, straightness of individual dendrites and the branching complexity of the dendritic tree, using eight morphometric parameters. Hence, we identify five types of nerve cells in the human putamen: type I—small spiny neurons; type II—large spiny neurons; type III—large aspiny neurons; type IV—neurons with a large soma and a medium dendritic field; and type V—small aspiny neurons. By performing an adequate statistical analysis on these parameters, we point out that the proposed types differ enough in their morphology to warrant our qualitative classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adinofi AM, Pappas GD (1968) The fine structure of the caudate nucleus of the cat. J Comp Neurol 133:168–184

    Google Scholar 

  • Bernácer J, Prensa L, Giménez-Amaya JM (2007) Cholinergic interneurons are differentially distributed in the human striatum. PLoS One 2(11):e1174

    Article  PubMed  Google Scholar 

  • Bernácer J, Prensa L, Giménez-Amaya JM (2008) Chemical architecture of the posterior striatum in the human brain. J Neurol Transm 115:67–75

    Article  Google Scholar 

  • Braak H, Braak E (1982) Neuronal types in the striatum of man. Cell Tissue Res 227:319–342

    Article  PubMed  CAS  Google Scholar 

  • Chang HT, Wilson CJ, Kitai ST (1982) A Golgi study of rat neostriatal neurons: light microscopic analysis. J Comp Neurol 208:107–126

    Article  PubMed  CAS  Google Scholar 

  • Chesselet MF, Plotkin JL, Wu N, Levine MS (2007) Development of striatal fast-spiking GABAergic interneurons. Prog Brain Res 160:261–272

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res 114:245–256

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M, Pasik T, Pasik P (1980) Ultrastructure of Golgi-impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum. J Neurocytol 9:471–492

    Article  PubMed  CAS  Google Scholar 

  • Dimova R, Vuillet J, Seite R (1980) Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections. Neuroscience 5:1581–1596

    Article  PubMed  CAS  Google Scholar 

  • Fernández E, Jelinek HF (2001) Use of fractal theory in neuroscience: methods, advantages, and potential problems. Methods 24:309–321

    Article  PubMed  Google Scholar 

  • Fino E, Venance L (2011) Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology 60:780–788

    Article  PubMed  CAS  Google Scholar 

  • Ghiglieri V, Bagetta V, Calabresi P, Picconi B (2011) Functional interactions within striatal microcircuit in animal models of Huntington’s disease. Neuroscience. doi:10.1016/j.neuroscience.2011.06.075

    Google Scholar 

  • Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30:2223–2234

    Article  PubMed  CAS  Google Scholar 

  • Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311

    Article  PubMed  CAS  Google Scholar 

  • Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 234:317–333

    Article  PubMed  CAS  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    Article  PubMed  Google Scholar 

  • Hisano S (2003) Vesicular glutamate transporters in the brain. Anat Sci Int 78:191–204

    Article  PubMed  CAS  Google Scholar 

  • Kemp JM, Powell TPS (1971) The structure of caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond (Biol) 262:383–401

    Article  CAS  Google Scholar 

  • Kuricky BY (1969) Mathematical methods in physiology (in Russian). Nauka, Leningrad

    Google Scholar 

  • Lalošević D, Somer Lj, Đolai M, Lalošević V, Mažibrada J, Krnojelac D (2005) Mikroskopska laboratorijskatehnika u medicini. Medicinski fakultet, Novi Sad

    Google Scholar 

  • Leontovich TA (1998) Large neostriatal neurons in humans and their possible role in neuronal networks. Neurosci Behav Physiol 28:252–259

    Article  PubMed  CAS  Google Scholar 

  • McNeill TH, Koek LL (1990) Differential effects of advancing age on neurotransmitter cell loss in the substantia nigra and striatum of C57BL/6N mice. Brain Res 521:107–117

    Article  PubMed  CAS  Google Scholar 

  • Mellios K, Zacharaki T, Sophou S, Latsari M, Antonopoulos J, Dinopoulos A, Parnavelas JG, Dori I (2009) Natural and lesion-induced apoptosis in the rat striatum during development. Brain Res 1252:30–44

    Article  PubMed  CAS  Google Scholar 

  • Milošević NT, Ristanović D, Jelinek HF, Rajković K (2009) Quantitative analysis of dendritic morphology of the alpha and delta retinal ganglion cells in the rat: a cell classification study. J Theor Biol 259:142–150

    Article  PubMed  Google Scholar 

  • Milošević NT, Krstonošić B, Ristanović D, Gudović R (2011) Fractal analysis of neuronal dendritic branching pattern in the human neostriatum: a revised classification scheme. In: Dobrescu R (ed) Proceedings CSCS-18. Interdisciplinary approaches in fractal analysis IAFA 2011, vol 3. Editura Politehnica, Bucharest, pp 871–876

  • Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13:254–258

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan S, Hanley JJ, Deniau JM, Bolam JP (2002) Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22:8158–8169

    PubMed  CAS  Google Scholar 

  • Raz N, Torres IJ, Acker JD (1995) Age, gender and hemispheric differences in human striatum: a quantitative review and new data from in vivo MRI morphometry. Neurobiol Learn Mem 63:133–142

    Article  PubMed  CAS  Google Scholar 

  • Ristanović D, Milošević NT, Jelinek HF, Stefanović IB (2009a) Mathematical modelling of neuronal dendritic branching patterns in two dimensions: application to retinal ganglion cells in the cat and rat. Biol Cybern 100:97–108

    Article  PubMed  Google Scholar 

  • Ristanović D, Milošević NT, Stefanović IB, Marić D, Popov I (2009b) Cell image area as a tool for neuronal classification. J Neurosci Methods 182:272–278

    Article  PubMed  Google Scholar 

  • Ristanović D, Milošević NT, Stefanović BD, Marić DL, Rajković K (2010) Morphology and classification of large neurons in the adult human dentate nucleus: a qualitative and quantitative analysis of 2D images. Neurosci Res 67:1–7

    Article  PubMed  Google Scholar 

  • Ristanović D, Milošević NT, Štulić V (2006) Application of modified Sholl analysis to neuronal dendritic arborization of the cat spinal cord. J Neurosci Methods 158:212–218

    Article  PubMed  Google Scholar 

  • Schmitt O, Eggers R, Haug H (1995) Quantitative investigations into the histostructural nature of the human putamen I. Staining, cell classification and morphometry. Ann Anat 177:243–250

    Article  PubMed  CAS  Google Scholar 

  • Schröder KF, Hopf A, Lange H, Thörner G (1975) Morphometrisch-statistische Strukturanalysen des Striatum, Pallidum und Nucleus Subthalamicus beim Menschen. J Hirnforsch 16:333–350

    PubMed  Google Scholar 

  • Somogy JP, Bolam JP, Smith AD (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscope study using the Golgi-peroxidase transport degeneration procedure. J Comp Neurol 195:567–584

    Article  Google Scholar 

  • Steiner H, Tseng KY (2010) Handbook of basal ganglia structure and function. Academic, London

    Google Scholar 

  • Tanaka D Jr (1980) Development of spiny and aspiny neurons in the caudate nucleus of the dog during the first postnatal month. J Comp Neurol 192:247–264

    Article  PubMed  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3:383–398

    PubMed  CAS  Google Scholar 

  • Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863:182–191

    Article  PubMed  CAS  Google Scholar 

  • Yelnik J, François C, Percheron G, Tandé D (1991) Morphological taxonomy of the neurons of the primate striatum. J Comp Neurol 313:273–294

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Krstonošić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krstonošić, B., Milošević, N.T., Gudović, R. et al. Neuronal images of the putamen in the adult human neostriatum: a revised classification supported by a qualitative and quantitative analysis. Anat Sci Int 87, 115–125 (2012). https://doi.org/10.1007/s12565-012-0131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-012-0131-4

Keywords

Navigation