Abstract
In recent years, smart materials have piqued the interest of scientists and physicians in the biomedical community owing to their ability to modify their properties in response to an external stimulation or changes in their surroundings. Biocompatible piezoelectric materials are an interesting group of smart materials due to their ability to produce electrical charges without an external power source. Electric signals produced by piezoelectric scaffolds can renew and regenerate tissues through special pathways like that found in the extracellular matrix. This review summarizes the piezoelectric phenomenon, piezoelectric effects generated within biological tissues, piezoelectric biomaterials, and their applications in tissue engineering and their use as biosensors.


Source: Adapted from Onscale (2022)

Reproduced with permission from Kapat et al. (2020)



adapted from Sedaghati et al. 2014)

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aaron RK, Ciombor DM, Simon BJ (2004) Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res 1976–2007(419):21–29. https://doi.org/10.1097/00003086-200402000-00005
Abeed R, Naseer M, Abel E (1998) Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma 12:510–513. https://doi.org/10.1097/00005131-199809000-00015
Ahamed R, Choi S-B, Ferdaus MM (2018) A state of art on magneto-rheological materials and their potential applications. J Intell Mater Syst Struct 29:2051–2095. https://doi.org/10.1177/1045389X18754350
Ahn AC, Grodzinsky Aj (2009) Relevance of collagen piezoelectricity to “Wolff’s Law”: a critical review. Med Eng Phys 31:733–741. https://doi.org/10.1016/j.medengphy.2009.02.006
Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775. https://doi.org/10.1109/TUFFC.2005.1503962
Akhras G (2000) Smart materials and smart systems for the future. Canadian Military J 1:25–31
Ali F, Raza W, Li X, Gul HK, K-H. (2019) Piezoelectric energy harvesters for biomedical applications. Nano Energy 57:879–902. https://doi.org/10.1016/j.nanoen.2019.01.012
Aloraini DA, Almuqrin AH, Alanazi A, Ain QT, Alodhayb AN (2021) Rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2 in label-free manner using micromechanical sensors. Sensors 21:4439. https://doi.org/10.3390/s21134439
Ani, SM. 2006. Physical behaviour of powder ceramic part using Cold Isostatic Pressing (CIP) processes. Universiti Teknologi Malaysia.
Anju, M., Raj, DK., Madathil, BK., Kasoju, N. Anil Kumar, P. 2021. Intelligent biomaterials for tissue engineering and biomedical applications: current landscape and future prospects. Biomater Tissue Eng Regenerative Med. Springer. https://doi.org/10.1007/978-981-16-0002-9_16
Anselme K, Ploux L, Ponche A (2010) Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol 24:831–852. https://doi.org/10.1163/016942409X12598231568186
Arif S, Qudsia S, Urooj S, Chaudry N, Arshad A, Andleeb S (2015) Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosens Bioelectron 65:62–70. https://doi.org/10.1016/j.bios.2014.09.088
Arnau A, Soares D (2009) Fundamentals of piezoelectricity. Springer, Piezoelectric transducers and applications
Azhar A, Hassan N, Singh M, Al-Hossaini K, Kamal MA (2021) Synopsis of pharmotechnological approaches in diagnostic and management strategies for fighting against COVID-19. Curr Pharm Des 27:4086–4099. https://doi.org/10.2174/1381612827666210715154004
Badaraev AD, Koniaeva A, Krikova SA, Shesterikov EV, Bolbasov EN, Nemoykina AL et al (2020) Piezoelectric polymer membranes with thin antibacterial coating for the regeneration of oral mucosa. Appl Surf Sci 504. https://doi.org/10.1016/j.apsusc.2019.144068
Bell AJ, Deubzer O (2018) Lead-free piezoelectrics—the environmental and regulatory issues. MRS Bull 43:581–587. https://doi.org/10.1557/mrs.2018.154
Bellido T (2014) Osteocyte-driven bone remodeling. Calcif Tissue Int 94:25–34https://doi.org/10.1007/s00223-013-9774-y
Binyamin G, Shafi BM, Mery CM (2006) Biomaterials: a primer for surgeons. Seminars in pediatric surgery, Elsevier, 276–283. https://doi.org/10.1053/j.sempedsurg.2006.07.007
Bostrom MP (1998) Expression of bone morphogenetic proteins in fracture healing. Clin Orthopaedics Related Res®, 355, S116-S123. https://doi.org/10.1097/00003086-199810001-00013
Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13:357–367. https://doi.org/10.1002/jor.1100130309
Brankovic Z, Brankovic G, Jovalekic Č, Maniette Y, Cilense M, Varela JA (2003) Mechanochemical synthesis of PZT powders. Materials Science and Engineering: A, 345, 243–248. https://doi.org/10.1002/jor.1100130309
Broadhurst M, Davis G, Mckinney J, Collins R (1978) Piezoelectricity and pyroelectricity in polyvinylidene fluoride—a model. J Appl Phys 49:4992–4997
Bystrov VS, Bdikin IK, Heredia A, Pullar RC, Mishina ED, Sigov AS, Kholkin AL (2012) Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: Ciofani G, Menciassi A (eds) Piezoelectric nanomaterials for biomedical applications. Nanomedicine and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3_7
Cerrolaza M, Duarte V, Garzon-Alvarado D (2017) Analysis of bone remodeling under piezoelectricity effects using boundary elements. J Bionic Eng 14:659–671. https://doi.org/10.1016/S1672-6529(16)60432-8
Chaudhari R, Vora JJ, Parikh DM (2021) A Review on applications of nitinol shape memory alloy. In: Parwani AK, Ramkumar P, Abhishek K, Yadav SK (eds) Recent advances in mechanical infrastructure. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-33-4176-0_10
Chen C, Wang X, Wang Y, Yang D, Yao F, Zhang W, Wang B, Sewvandi GA, Yang D, Hu D (2020) Additive manufacturing of piezoelectric materials. Adv Func Mater 30:2005141. https://doi.org/10.1002/adfm.202005141
Chen S, Auriat AM, Li T, Stumpf TR, Wylie R, Chen X, Willerth SM, Derosa M, Tarizian M, Cao X (2019) Advancements in Canadian biomaterials research in neurotraumatic diagnosis and therapies. Processes 7:336. https://doi.org/10.3390/pr7060336
Chen Y, Qian C, Liu C, Shen H, Wang Z, Ping J, Wu J, Chen H (2020) Nucleic acid amplification free biosensors for pathogen detection. Biosens Bioelectron 153:112049. https://doi.org/10.1016/j.bios.2020.112049
Ciofani G, Danti S, Ricotti L, D’allessandro D, Moscato S, Berrettini S, Mattoli V, Menciassi A (2011) Boron nitride nanotubes: production, properties, biological interactions and potential applications as therapeutic agents in brain diseases. Curr Nanosci 7:94–109. https://doi.org/10.2174/157341311794480345
Ciofani, G. Menciassi, A. 2012. Piezoelectric nanomaterials for biomedical applications. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28044-3
Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139. https://doi.org/10.2215/CJN.04151206
Cordero Edwards K, Domingo N, Abdollahi A, Sort J, Catalan G (2017) Ferroelectrics as smart mechanical materials. Adv Mater 29:1702210. https://doi.org/10.1002/adma.201702210
Covaci C, Gontean A (2020) Piezoelectric energy harvesting solutions: a review. Sensors 20:3512. https://doi.org/10.3390/s20123512
Cross L, Newnham R (1987) Hist Ferroelectrics Ceramics Civilization 3:289–305
Curry EJ, Ke K, Chorsi MT, Wrobel KS, Miller AN, Patel A, Kim I, Feng J, Yue L, Wu Q (2018) Biodegradable piezoelectric force sensor. Proc Natl Acad Sci 115:909–914
Da Costa Reis J, Oliveira MT (2020) Bone: functions, structure and physiology. In: Belinha J, Manzanares-Céspedes MC, Completo A (eds) The computational mechanics of bone tissue. Lecture Notes in Computational Vision and Biomechanics, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-37541-6_1
Davis HG (1867) Conservative surgery. Appleton
Devet, T. 2020. Electrical stimulation in bone cell culture media.
Dineva P, Gross D, Muller R, Rangelov T (2014) Piezoelectric materials. Springer, Dynamic fracture of piezoelectric materials
Dong K, Peng X, Wang ZL (2020) Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 32:1902549. https://doi.org/10.1002/adma.201902549
Duerig, T., Stoeckel, D. Johnson, D. 2003 SMA: smart materials for medical applications. European Workshop on Smart Structures in Engineering and Technology. International Soc Optics and Photonics, 7–15.
Ebara, M., Kotsuchibashi, Y., Narain, R., Idota, N., Kim, Y-J., Hoffman, JM., Uto, K. Aoyagi, T. 2014. Smart biomaterials. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54400-5
Enderle, JD. 2005. Introduction to biomedical engineering second edition.
Erhart J, Privratska J (2010) Principles of piezoelectricity. Springer, Fundamentals of Piezoelectric Sensorics
Fadel MA, Kamel NA, Darwish MM, El-Messieh A, Salwa L, Abd-el-Nour KN, Khalil WA (2020a) Effect of microwave treatment on biophysical and surface properties of polyethylene terephthalate (PET) for blood contact applications. Proceed National Academy Sci, India Section B: Biol Sci 90:343–351. https://doi.org/10.1007/s40011-019-01107-8
Fadel MA, Kamel NA, Darwish MM, El-Messieh SLA, Abd-el-Nour KN, Khalil WA (2020b) Preparation and characterization of polyethylene terephthalate–chamomile oil blends with enhanced hydrophilicity and anticoagulant properties. Prog Biomater 9:97–106. https://doi.org/10.1007/s40204-020-00133-4
Fairman RÅ, Åkerfeldt KS (2005) Peptides as novel smart materials. Curr Opin Struct Biol 15:453–463. https://doi.org/10.1016/j.sbi.2005.07.005
MY., Mitchell, GR., Alves, N. Morouco, P. 2019 Smart materials for biomedical applications: the usefulness of shape-memory polymers. Applied Mechanics and Materials, Trans Tech Publ, 237–247.
Ferreira, A., Gonzalez, G., Gonzalez -Paz, R., Feijoo, J., Lira-Olivares, J. Noris-Suarez, K. 2009. Bone collagen role in piezoelectric mediated remineralization. Acta Microsc 18:278–286
Finazzi G, Petroutsos D, Tomizioli M, Flori S, Sautron E, Villanova V, Rolland N, Seigneurin-Berny D (2015) Ions channels/transporters and chloroplast regulation. Cell Calcium 58:86–97. https://doi.org/10.1016/j.ceca.2014.10.002
Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188
Fost HM (2001) From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anatomical Record: Official Publ American Assoc Anatomists 262:398–419. https://doi.org/10.1002/ar.1049
Fukada E (1995) Piezoelectricity of biopolymers. Biorheology 32:593–609
Fukada E (2000) History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1277–1290. https://doi.org/10.1109/58.883516
Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Phys Soc Jpn 12:1158–1162
Fukada E, Yasuda I (1964) Piezoelectric effects in collagen. Jpn J Appl Phys 3:117
Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7:709–729. https://doi.org/10.1039/C8TB02491J
Garcia Huete, N. 2017. Development and applications of semicrystalline polymers: from shape memory to self-healing materials.
Gautschi G (2002) Background of piezoelectric sensors. In: Piezoelectric Sensorics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04732-3_2
General, OOTS. 2004. The basics of bone in health and disease. Bone Health and Osteoporosis: A Report of the Surgeon General. Office of the Surgeon General (US).
Genet S, Costalat R, Burger J (2000) A few comments on electrostatic interactions in cell physiology. Acta Biotheor 48:273–287. https://doi.org/10.1023/A:1010229531210
Goel P, Yadav K (2005) A comparative analysis of PBZT synthesized by co-precipitation and sol-gel method
Gonzalez M (2016) Impact of Li non-stoichiometry on the performance of acoustic devices on LiTaO3 and LiNbO3 single crystals. Université de Franche-Comté
Gross S, Tadigadapa S, Jackson T, Trolier-Mckinstry S, Zhang Q (2003) Lead-zirconate-titanate-based piezoelectric micromachined switch. Appl Phys Lett 83:174–176. https://doi.org/10.1063/1.1589192
Guinier A (1994) X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Courier Corporation
Guo Z, Liu H, Dai W, Lei Y (2020) Responsive principles and applications of smart materials in biosensing. Smart Mater Med 1:54–65. https://doi.org/10.1016/j.smaim.2020.07.001
Halperin C, Mutchnik S, Agronin A, Molotskii M, Urenski P, Salai M, Rosenman G (2004) Piezoelectric effect in human bones studied in nanometer scale. Nano Lett 4:1253–1256. https://doi.org/10.1021/nl049453i
Hannaford PC, Simpson JA, Bisset AF, Davis A, Mckerrow W, Mills R (2005) The prevalence of ear, nose and throat problems in the community: results from a national cross-sectional postal survey in Scotland. Fam Pract 22:227–233. https://doi.org/10.1093/fampra/cmi004
Hocker H, Klee D (1996) Polymers for medical uses. Macromolecular Symposia, Wiley Online Library 421–427. https://doi.org/10.1002/masy.19961020149
Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149. https://doi.org/10.1126/science.7761829
Hopkins K (2015) Deafness in cochlear and auditory nerve disorders. Elsevier, Handbook of Clinical Neurology. https://doi.org/10.1016/B978-0-444-62630-1.00027-5
Hu Y, Kang W, Fang Y, Xie L, Qiu L, Jin T (2018) Piezoelectric poly (vinylidene fluoride)(PVDF) polymer-based sensor for wrist motion signal detection. Appl Sci 8:836. https://doi.org/10.3390/app8050836
Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J (2011) Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc Natl Acad Sci 108:18390–18395. https://doi.org/10.1073/pnas.1110036108
Iwazumi T, Noble M (1989) An electrostatic mechanism of muscular contraction. Int J Cardiol 24:267–275. https://doi.org/10.1016/0167-5273(89)90003-X
Jacob J, More N, Kalia K, Kapusetti G (2018) Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflam Regen 38:1–11. https://doi.org/10.1186/s41232-018-0059-8
Jacob KS, Panicker NR, Selvam IP, Kumar V (2003) Sol-gel synthesis of nanocrystalline PZT using a novel system. J Sol-Gel Sci Technol 28:289–295. https://doi.org/10.1023/A:1027457929302
Jia N, He Q, Sun J, Xia G, Song R (2017) Crystallization behavior and electroactive properties of PVDF, P (VDF-TrFE) and their blend films. Polym Testing 57:302–306. https://doi.org/10.1016/j.polymertesting.2016.12.003
Jiang W, Zhang R, Jiang B, Cao W (2003) Characterization of piezoelectric materials with large piezoelectric and electromechanical coupling coefficients. Ultrasonics 41:55–63. https://doi.org/10.1016/S0041-624X(02)00436-5
Jung Y, Kwak J-H, Kang H, Kim W, Hur S (2015) Development of piezoelectric artificial cochlea inspired by human hearing organ. Conference on Biomimetic and Biohybrid Systems, Springer 145–152. https://doi.org/10.1007/978-3-319-22979-9_15
Kabir H, Merati M, Abdekhodaie MJ (2021) Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19. J Med Eng Technol 1–11. https://doi.org/10.1080/03091902.2021.1921067
Kamel NA, Abd-el-Messieh SL, Mansour SH, Abd-el-Nour K (2015a) Effect of incorporation of bone powder on the physical properties of polypropylene fumarate based bone cement. Rom J Biophys 25
Kamel NA, Mansour SH, Abd-el-Messieh SL, Khalil WA, Abd-el-Nour KN (2015b) Biophysical properties of PPF/HA nanocomposites reinforced with natural bone powder. Adv Mater Res 4:145. https://doi.org/10.12989/amr.2015.4.3.145
Kapat K, Shubhra QT, Zhou M, Leeuwenburgh S (2020) Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv Func Mater 30:1909045. https://doi.org/10.1002/adfm.201909045
Karimi S, Ghaee A, Barzin J (2019) Preparation and characterization of a piezoelectric poly (vinylidene fluoride)/nanohydroxyapatite scaffold capable of naproxen delivery. Eur Polymer J 112:442–451. https://doi.org/10.1016/j.eurpolymj.2019.01.027
Khaing ZZ, Thomas RC, Geissler SA, Schmidt CE (2014) Advanced biomaterials for repairing the nervous system: what can hydrogels do for the brain? Mater Today 17:332–340. https://doi.org/10.1016/j.mattod.2014.05.011
Khare D, Basu B, Dubey AK (2020) Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 258:120280. https://doi.org/10.1016/j.biomaterials.2020.120280
Kholkin AL, Pertsev NAG, AV. (2008) Piezoelectricity and crystal symmetry. Springer, Piezoelectric and Acoustic Materials for Transducer Applications. https://doi.org/10.1007/978-0-387-76540-2_2
Kim K (2013) Novel shear mode piezoelectric sensors and their applications
Koptsik VA, Rez I (1981) Pierre Curie’s works in the field of crystal physics (on the one-hundredth anniversary of the discovery of the piezoelectric effect). Soviet Phys Uspekhi 24:426. https://doi.org/10.1070/PU1981v024n05ABEH004861
Lai Y-H, Chen Y-H, Pal A, Chou S-H, Chang S-J, Huang E-W, Lin Z-H, Chen S-Y (2021) Regulation of cell differentiation via synergistic self-powered stimulation and degradation behavior of a biodegradable composite piezoelectric scaffold for cartilage tissue. Nano Energy 90:106545. https://doi.org/10.1016/j.nanoen.2021.106545
Lang SB (2016) Review of ferroelectric hydroxyapatite and its application to biomedicine. Phase Transitions 89:678–694. https://doi.org/10.1080/01411594.2016.1182166
Lay R, Deijs GSM, J. (2021) The intrinsic piezoelectric properties of materials–a review with a focus on biological materials. RSC Adv 11:30657–30673. https://doi.org/10.1039/D1RA03557F
Lee JC, Suh IW, Park CH, Kim CS (2021) Polyvinylidene fluoride/silk fibroin-based bio-piezoelectric nanofibrous scaffolds for biomedical application. J Tissue Eng Regen Med 15:869–877. https://doi.org/10.1002/term.3232
Lee S-H, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59:339–359. https://doi.org/10.1016/j.addr.2007.03.016
Leung C, Kinns H, Hoogenboom BW, Howorka S, Mesquida P (2009) Imaging surface charges of individual biomolecules. Nano Lett 9:2769–2773. https://doi.org/10.1021/nl9012979
Li J-F (2020) Lead-Free Piezoelectric Materials. John Wiley & Sons
Liu J, Gu H, Liu Q, Ren L, Li G (2019) An intelligent material for tissue reconstruction: the piezoelectric property of polycaprolactone/barium titanate composites. Mater Lett 236:686–689. https://doi.org/10.1016/j.matlet.2018.11.036
Loo L, Capobianco JA, Wu W, Gao X, Shih WY, Shih W-H, Pourrezaei K, Robinson MK, Adams GP (2011) Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers. Anal Chem 83:3392–3397. https://doi.org/10.1021/ac103301r
Magnusson SP, Aagaard P, Rosager S, Dyhre-Poulsen P, Kjaer M (2001) Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol 531:277–288. https://doi.org/10.1111/j.1469-7793.2001.0277j.x
Main JA, Garcia E, Newton DV (1995) Precision position control of piezoelectric actuators using charge feedback. J Guid Control Dyn 18:1068–1073. https://doi.org/10.2514/3.21506
Maiti S, Karan SK, Kim JKK, BB. (2019) Nature driven bio-piezoelectric/triboelectric nanogenerator as next-generation green energy harvester for smart and pollution free society. Adv Energy Mater 9:1803027. https://doi.org/10.1002/aenm.201803027
Makhatadze GI (2017) Linking computation and experiments to study the role of charge–charge interactions in protein folding and stability. Phys Biol 14:013002. https://doi.org/10.1088/1478-3975/14/1/013002
Mango VL, Olasehinde O, Omisore AD, Wuraola FO, Famurewa OC, Sevilimedu V, Knapp GC, Steinberg E, Akinmaye PR, Adewoyin BD (2022) The iBreastExam versus clinical breast examination for breast evaluation in high risk and symptomatic Nigerian women: a prospective study. Lancet Glob Health 10:e555–e563. https://doi.org/10.1016/S2214-109X(22)00030-4
Marco M-P, D. (1996) Environmental applications of analytical biosensors. Meas Sci Technol 7:1547. https://doi.org/10.1088/0957-0233/7/11/002
Marino A, Gross B (1989) Piezoelectricity in cementum, dentine and bone. Arch Oral Biol 34:507–509. https://doi.org/10.1016/0003-9969(89)90087-3
Marshall JM, Dimova-Malinovska D (2002) Photovoltaic and photoactive materials: properties, technology and applications. Springer Science & Business Media. https://doi.org/10.1007/978-94-010-0632-3
Martin A (1941) Tribo-electricity in wool and hair. Proceed Phys Soc (1926–1948) 53:186. https://doi.org/10.1088/0959-5309/53/2/310
Mason W (1946) The elastic, piezoelectric, and dielectric constants of potassium dihydrogen phosphate and ammonium dihydrogen phosphate. Phys Rev 69:173. https://doi.org/10.1103/PhysRev.69.173
Mccabe JF, Yan Z, Al Naimi O, Mmahmoud G, Rolland S (2011) Smart materials in dentistry. Aust Dent J 56:3–10. https://doi.org/10.1111/j.1834-7819.2010.01291.x
Mcknight CL (2012) Vibratory response of dry human skulls
Miao H, Li F (2015) Realization of face-shear piezoelectric coefficient d36 in PZT ceramics via ferroelastic domain engineering. Appl Phys Lett 107:122902. https://doi.org/10.1063/1.4931685
Montoya C, Jain A, Londoὴ JJ, Correa S, Lelkes PI, Melo MA, Orrego S (2021) Multifunctional dental composite with piezoelectric nanofillers for combined antibacterial and mineralization effects. ACS Appl Mater Interfaces 13:43868–43879. https://doi.org/10.1021/acsami.1c06331
Moore WR, Graves SE, Bain GI (2001) Synthetic bone graft substitutes. ANZ J Surg 71:354–361. https://doi.org/10.1046/j.1440-1622.2001.02128.x
Mukherjee N, Roseman RD, Willging JP (2000) The piezoelectric cochlear implant: concept, feasibility, challenges, and issues. J Biomed Mater Res: Official J Soc Biomater, Japanese Soc Biomater, Australian Soc Biomater Korean Soc Biomater 53:181–187. https://doi.org/10.1002/(SICI)1097-4636(2000)53:2<181::AID-JBM8>3.0.CO;2-T
Murayama N, Obara H (1983) Piezoelectric polymers and their applications. Jpn J Appl Phys 22:3. https://doi.org/10.7567/JJAPS.22S3.3
Nandhini A, Sudhakar T, Premkumar J (2021) Ceramics and nanoceramics in biomedical applications. Springer, Handbook of Polymer and Ceramic Nanotechnology. https://doi.org/10.1007/978-3-030-40513-7_71
Narita F, Wang Z, Kurita H, Li Z, Shi Y, Jia Y, Soutis C (2021) A review of piezoelectric and magnetostrictive biosensor materials for detection of COVID-19 and other viruses. Adv Mater 33:2005448. https://doi.org/10.1002/adma.202005448
Navarro M, Aparicio C, Charles-Harris M, Ginebra M, Engel E, Planell J (2006) Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties. Ordered Polymeric Nanostructures at Surfaces 209–231. https://doi.org/10.1007/12_068
Nerkar PS, Tawale SJ, Saoji SM. Doye AD (2022) Evaluation of smart bio-materials in orthopedics and tissue engineering. Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020). Springer, p 587–600. https://doi.org/10.1007/978-3-030-73495-4_40
Ning C, Zhou Z, Tan G, Zhu Y, Mao C (2018) Electroactive polymers for tissue regeneration: developments and perspectives. Prog Polym Sci 81:144–162. https://doi.org/10.1016/j.progpolymsci.2018.01.001
Nour E, Nur O, Willander M (2017) Zinc oxide piezoelectric nanogenerators for low frequency applications. Semicond Sci Technol 32:064005. https://doi.org/10.1088/1361-6641/aa6bde
Otsuka K, Wayman CM (1999) Shape memory materials, Cambridge university press
Panda P, Sahoo B (2015) PZT to lead free piezo ceramics: a review. Ferroelectrics 474:128–143. http://www.worldcat.org/oclc/301078063
Park IW, Kim KW, Hong Y, Yoon HJ, Lee Y, Gwak D, Heo K (2020) Recent developments and prospects of M13-bacteriophage based piezoelectric energy harvesting devices. Nanomaterials 10:93. https://doi.org/10.3390/nano10010093
Pereira A, Sales M, Rodrigues L (2019) Biosensors for rapid detection of breast cancer biomarkers. Elsevier, Advanced biosensors for health care applications. https://doi.org/10.1016/B978-0-12-815743-5.00003-2
Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metallurgy 2011. https://doi.org/10.1155/2011/501483
Piazzolla A, Solarino G, Bizzoca D, Garofalo N, Dicuonzo F, Setti S, Moretti B (2015) Capacitive coupling electric fields in the treatment of vertebral compression fractures. J Biol Regul Homeost Agents 29:637–646
Pohanka M (2018) Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11:448. https://doi.org/10.3390/ma11030448
Pohanka, M. Skladal, P (2008) Electrochemical biosensors--principles and applications. J Appl Biomed 6. https://doi.org/10.32725/jab.2008.008
Poillot P, Le Maitre CL, Huyghe JM (2021) The strain-generated electrical potential in cartilaginous tissues: a role for piezoelectricity. Biophys Rev 13:91–100. https://doi.org/10.1007/s12551-021-00779-9
Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S (2011) Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS ONE 6:e26211. https://doi.org/10.1371/journal.pone.0026211
Qi Y, Mcalpine MC (2010) Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ Sci 3:1275–1285. https://doi.org/10.1039/C0EE00137F
Qian Y, Cheng Y, Song J, Xu Y, Yuan WE, Fan C, Zheng X (2020) Mechano-informed biomimetic polymer scaffolds by incorporating self-powered zinc oxide nanogenerators enhance motor recovery and neural function. Small 16:2000796. https://doi.org/10.1002/smll.202000796
Rajabi AH, Jaffe M, Arinzeh TL (2015) Piezoelectric materials for tissue regeneration: a review. Acta Biomater 24:12–23. https://doi.org/10.1016/j.actbio.2015.07.010
Ramirez-Valles EG, Rodriguez-Pulido A, Barraza-Salas M, Martinez-Velis I, Meneses-Morales I, Ayala-Garcia VM, Alba-Fierro CA (2020) A quest for new cancer diagnosis, prognosis and prediction biomarkers and their use in biosensors development. Technol Cancer Res Treat 19:1533033820957033. https://doi.org/10.1177/1533033820957033
Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286–311. https://doi.org/10.1002/mabi.201100325
Reilly P (2007) The impact of neurotrauma on society: an international perspective. Prog Brain Res 161:3–9. https://doi.org/10.1016/S0079-6123(06)61001-7
Ribeiro C, Sencadas V, Correia DM, Lanceros-Mendez S (2015) Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf, B 136:46–55. https://doi.org/10.1016/j.colsurfb.2015.08.043
Richter H, Torres FG, Sanchez J (2008) Strain sensing with a piezoelectric biopolymer. World Forum on Smart Materials and Smart Structures Technology: Proceedings of SMSST'07, World Forum on Smart Materials and Smart Structures Technology (SMSST'07), China, 22–27 May, 2007. CRC Press, p 444. https://doi.org/10.1201/9781439828441
Rodel J, Jo W, Seifert KT, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177. https://doi.org/10.1111/j.1551-2916.2009.03061.x
Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301. https://doi.org/10.1016/j.progpolymsci.2009.10.008
Ruan L, Yao X, Chang Y, Zou L, Qin G, Zhang X (2018) Properties and applications of the β phase poly (vinylidene fluoride). Polymers 10:228. https://doi.org/10.3390/polym10030228
Rubiano AM, Carney N, Chesnut R, Puyana JC (2015) Global neurotrauma research challenges and opportunities. Nature 527:S193–S197. https://doi.org/10.1038/nature16035
Saigusa Y (2017) Quartz-based piezoelectric materials. Elsevier, Advanced Piezoelectric Materials. https://doi.org/10.1016/B978-0-08-102135-4.00005-9
Sappati KK, Bhadra S (2018) Piezoelectric polymer and paper substrates: a review. Sensors 18:3605. https://doi.org/10.3390/s18113605
Schmid RD, Scheller F (1989) Biosensors-applications in medicine, environmental protection and process control
Seil JT, Webster TJ (2008) Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites. Int J Nanomed 3:523. https://doi.org/10.2147/ijn.s4346
Senior KR (2010) Bone and muscle: structure, force, and motion. The Rosen Publishing Group, Inc
Shahinpoor M, Kim KJ, Mojarrad M (2007) Artificial muscles: applications of advanced polymeric nanocomposites. CRC Press. https://doi.org/10.1201/9781584887140
Shang Y, Wang H, Chen Z, Zhang X, Rong F, Zhao Y (2019) Porous polyvinylidene fluoride thin-film sensors from colloidal crystal templates. J Nanosci Nanotechnol 19:8104–8111. https://doi.org/10.1166/jnn.2019.16765
Silva C, Pinheiro A, Figueiro S, Goes J, Sasaki J, Miranda M, Sombra A (2002) Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites. J Mater Sci 37:2061–2070. https://doi.org/10.1023/A:1015219800490
Singh I (1978) The architecture of cancellous bone. J Anat 127:305
Smith M, Kar-Narayan S (2022) Piezoelectric polymers: theory, challenges and opportunities. Int Mater Rev 67:65–88. https://doi.org/10.1080/09506608.2021.1915935
Soin N, Anand S, Shah T (2016) Energy harvesting and storage textiles. Elsevier, Handbook of Technical Textiles. https://doi.org/10.1016/B978-1-78242-465-9.00012-4
Sponchioni M, Palmiero UC, Moscatelli D (2019) Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater Sci Eng, C 102:589–605. https://doi.org/10.1016/j.msec.2019.04.069
Stapleton A, Noor MR, Soulimane T, Tofail SA (2016) Physiological role of piezoelectricity in biological building blocks. World Scientific, Electrically active materials for medical devices. https://doi.org/10.1142/9781783269877_0017
Starr MB, Wang X (2015) Coupling of piezoelectric effect with electrochemical processes. Nano Energy 14:296–311. https://doi.org/10.1016/j.nanoen.2015.01.035
Szabo TL (2004) Diagnostic ultrasound imaging: inside out. Academic press. https://doi.org/10.1016/C2011-0-07261-7
Tanaka T (1982) Piezoelectric devices in Japan. Ferroelectrics 40:167–187. https://doi.org/10.1080/00150198208218168
Tanaka Y, Nakayamada S, Okada Y (2005) Osteoblasts and osteoclasts in bone remodeling and inflammation. Current Drug Targets-Inflammation Allergy 4:325–328. https://doi.org/10.2174/1568010054022015
Tang Y, Chen L, Duan Z, Zhao K, Wu Z (2020) Graphene/barium titanate/polymethyl methacrylate bio-piezoelectric composites for biomedical application. Ceram Int 46:6567–6574. https://doi.org/10.1016/j.ceramint.2019.11.142
Tauer K (2007) Polymer-dispersionen. Max-Planck-Institut
Telega JJ, Wojnar R (2002) Piezoelectric effects in biological tissues. J Theor Appl Mech 40:723–759
Thomas, S., Balakrishnan, P. Sadasivan, SM. 2018. Fundamental biomaterials: ceramics, Woodhead Publishing.
Thuau D, Aabbas M, Wantz G, Hirsch L, Dufour I, Ayela C (2016) Piezoelectric polymer gated OFET: cutting-edge electro-mechanical transducer for organic MEMS-based sensors. Sci Rep 6:1–8. https://doi.org/10.1038/srep38672
Tichy J, Erhart J, Kittinger E, Privratska J (2010) Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-68427-5
Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196. https://doi.org/10.1039/C3CS35528D
Tzou H, Lee H-J, Arnold S (2004) Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mech Adv Mater Struct 11:367–393. https://doi.org/10.1080/15376490490451552
Uchino K (2017) Advanced piezoelectric materials: Science and technology. Woodhead Publishing
Vasquez Sancho F (2018) Flexoelectricity in biomaterials. Universitat Autònoma de Barcelona
Vijatovic M, Bobic J, Stojanovic B (2008) History and challenges of barium titanate: Part I. Sci Sinter 40:155–165. https://doi.org/10.2298/SOS0802155V
Vijatovic M, Bobic J, Stojanovic B (2008) History and challenges of barium titanate: Part II. Sci Sinter 40:235–244. https://doi.org/10.2298/SOS0803235V
Vijaya M (2012) Piezoelectric materials and devices: applications in engineering and medical sciences. CRC Press
Wadley HN (1996) Characteristics and processing of smart materials. In Virginia Univ, Smart Structures and Materials: Implications for Military Aircraft of New Generation p (SEE N 97–11475 01–23)
Wang L (2017a) Early Diagnosis of Breast Cancer Sensors 17:1572. https://doi.org/10.3390/s17071572
Wang Q (2016) Smart materials for tissue engineering: fundamental principles. Royal Society of Chemistry. https://doi.org/10.1039/9781782626756
Wang Q (2017) Smart materials for tissue engineering: applications. Royal Society of Chemistry. https://doi.org/10.1039/9781788010542
Wang Q, Yang J, Zhang W, Khoie R, Li YM, Zhu JG, Chen ZQ (2009) Manufacture and cytotoxicity of a lead-free piezoelectric ceramic as a bone substitute—consolidation of porous lithium sodium potassium niobate by Cold Isostatic Pressing. Int J Oral Sci 1:99–104. https://doi.org/10.4248/ijos.09005
Wang Y, Shi Y, Narita F (2021) Design and finite element simulation of metal-core piezoelectric fiber/epoxy matrix composites for virus detection. Sens Actuators, A 327:112742. https://doi.org/10.1016/j.sna.2021.112742
ZL (2009) ZnO nanowire and nanobelt platform for nanotechnology. Mater Sci Eng R Rep 64:33–71. https://doi.org/10.1016/j.mser.2009.02.001
Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Func Mater 14:943–956. https://doi.org/10.1002/adfm.200400180
Wang, ZL. Liu, Y. 2012. Piezoelectric effect at nanoscale. In: BHUSHAN, B. (ed.) Encyclopedia of nanotechnology. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-9751-4_273
Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246. https://doi.org/10.1126/science.112400
Wojnar R (2012) Piezoelectric phenomena in biological tissues. Springer, Piezoelectric nanomaterials for biomedical applications. https://doi.org/10.1007/978-3-642-28044-3_6
Wolff J (1892) Das Gesetz der Transformation der Knochen, Berlin, A. Law Bone Remodeling, Hirchwild. https://doi.org/10.1055/s-0028-1144106
Xu Q, Gao X, Zhao S, Liu YN, Zhang D, Zhou K, Khanbareh H, Chen W, Zhang Y, Bowen C (2021a) Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Adv Mater 33:2008452. https://doi.org/10.1002/adma.202008452
Xu Q, Gao X, Zhao S, Liu YN, Zhang D, Zhou K, Khanbareh H, Chen W, Zhang Y, Bowen C (2021b) Construction of bio‐piezoelectric platforms: from structures and synthesis to applications. Adv Mater2008452. https://doi.org/10.1002/adma.202170206
Xu X, Chung Y, Brooks AD, Shih W-H, Shih WY (2016) Development of array piezoelectric fingers towards in vivo breast tumor detection. Rev Sci Instrum 87:124301. https://doi.org/10.1063/1.4971325
Xu X, Gifford-Hollingsworth C, Sensenig R, Shih W-H, Shih WYB, AD. (2013) Breast tumor detection using piezoelectric fingers: first clinical report. J Am Coll Surg 216:1168–1173. https://doi.org/10.1016/j.jamcollsurg.2013.02.022
Xue J, Wan D, Lee SE, Wang J (1999) Mechanochemical synthesis of lead zirconate titanate from mixed oxides. J Am Ceram Soc 82:1687–1692. https://doi.org/10.1111/j.1151-2916.1999.tb01987.x
Xue J, Wan D, Wang J (1999) Mechanochemical synthesis of nanosized lead titanate powders from mixed oxides. Mater Lett 39:364–369. https://doi.org/10.1016/S0167-577X(99)00036-1
Ye Z-G (2008) Handbook of advanced dielectric, piezoelectric and ferroelectric materials: synthesis, properties and applications. Elsevier
Zaszczynska A, Sajkiewicz P, Gradys A (2020) Piezoelectric scaffolds as smart materials for neural tissue engineering. Polymers 12:161. https://doi.org/10.3390/polym12010161
Zec H, Shin DJW, T-H. (2014) Novel droplet platforms for the detection of disease biomarkers. Expert Rev Mol Diagn 14:787–801. https://doi.org/10.1586/14737159.2014.945437
Zhang S, Li F, Yu F, Jiang X, Lee H-Y, Luo J, Shrout J (2018) Recent developments in piezoelectric crystals. J Korean Ceram Soc 55:419–439. https://doi.org/10.4191/kcers.2018.55.5.12
Zhang Y, Chen L, Zeng J, Zhou K, Zhang D (2014) Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Mater Sci Eng, C 39:143–149. https://doi.org/10.1016/j.msec.2014.02.022
Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781. https://doi.org/10.1016/j.actbio.2011.03.019
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Ethics approval
Not applicable.
Consent to participate
Consent received. The author affirms that Wiley global permissions provided informed consent for publication of the images in Fig. 3.
Conflict of interest
The author declares no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kamel, N.A. Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine. Biophys Rev 14, 717–733 (2022). https://doi.org/10.1007/s12551-022-00969-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12551-022-00969-z