Skip to main content

Advertisement

Log in

Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abudupataer M, Chen N, Yan S et al (2019) Bioprinting a 3D vascular construct for engineering a vessel-on-a-chip. Biomed Microdevices 22:10

    Article  PubMed  CAS  Google Scholar 

  • Achyuta AKH, Conway AJ, Crouse RB et al (2013) A modular approach to create a neurovascular unit-on-a-chip. Lab Chip 13:542–553

    Article  CAS  PubMed  Google Scholar 

  • Aermes C, Hayn A, Fischer T, Mierke CT (2020) Environmentally controlled magnetic nano-tweezer for living cells and extracellular matrices. Sci Rep 10:13453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13:3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbari E, Spychalski GB, Rangharajan KK, Prakash S, Song JW (2018) Flow dynamics control endothelial permeability in a microfluidic vessel bifurcation model. Lab Chip 18:1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsmadi NZ, Shapiro SJ, Lewis CS et al (2017) Constricted microfluidic devices to study the effects of transient high shear exposure on platelets. Biomicrofluidics 11:064105

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbore C, Perego L, Sergides M, Capitanio M (2019) Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys Rev 11:765–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aung A, Bhullar IS, Theprungsirikul J et al (2016) 3D cardiac μtissues within a microfluidic device with real-time contractile stress readout. Lab Chip 16:153–162

    Article  CAS  PubMed  Google Scholar 

  • Bajpai A, Li R, Chen W (2021) The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 1491:3–24

    Article  PubMed  Google Scholar 

  • Balaguru UM, Sundaresan L, Manivannan J et al (2016) Disturbed flow mediated modulation of shear forces on endothelial plane: a proposed model for studying endothelium around atherosclerotic plaques. Sci Rep 6:27304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang S, Lee S-R, Ko J et al (2017) A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep 7:8083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baratchi S, Tovar-Lopez FJ, Khoshmanesh K et al (2014) Examination of the role of transient receptor potential vanilloid type 4 in endothelial responses to shear forces. Biomicrofluidics 8:044117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baratchi S, Khoshmanesh K, Woodman OL et al (2017) Molecular sensors of blood flow in endothelial cells. Trends Mol Med 23:850–868

    Article  CAS  PubMed  Google Scholar 

  • Baratchi S, Zaldivia MTK, Wallert M et al (2020) TAVI Represents an anti-inflammatory therapy via reduction of shear stress induced Piezo-1-mediated monocyte activation. Circulation 142:1092–1105

    Article  CAS  PubMed  Google Scholar 

  • Bersini S, Yazdi IK, Talò G et al (2016) Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 34:1113–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertassoni LE, Cecconi M, Manoharan V et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonakdar M, Graybill PM, Davalos RV (2017) A microfluidic model of the blood–brain barrier to study permeabilization by pulsed electric fields. RSC Adv 7:42811–42818

    Article  CAS  PubMed  Google Scholar 

  • Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12:1784–1792

    Article  CAS  PubMed  Google Scholar 

  • Brown AC, Stabenfeldt SE, Ahn B et al (2014) Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater 13:1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bye AP, Unsworth AJ, Gibbins JM (2016) Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost 14:918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho P, Fan H, Liu Z, He J-Q (2016) Small mammalian animal models of heart disease. American Journal of Cardiovascular Disease 6:70–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charalambos Vlachopoulos MOR, Nichols WW (2011) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. CRC Press

  • Chen LJ, Kaji H (2017) Modeling angiogenesis with micro- and nanotechnology. Lab Chip 17:4186–4219

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Corey SJ, Kim OV, Alber MS (2014) Systems biology of platelet-vessel wall interactions. Adv Exp Med Biol 844:85–98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Tang M, Huang D et al (2018) Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel. Lab Chip 18:2047–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Mo D, Gong M (2020) 3D Printed reconfigurable modular microfluidic system for generating gel microspheres. Micromachines 11:224

    Article  PubMed Central  Google Scholar 

  • Cheng S-Y, Heilman S, Wasserman M et al (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769

    Article  CAS  PubMed  Google Scholar 

  • Chiu J-J, Chen C-N, Lee P-L et al (2003) Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J Biomech 36:1883–1895

    Article  PubMed  Google Scholar 

  • Convery N, Gadegaard N (2019) 30 years of microfluidics. Micro and Nano Engineering 2:76–91

    Article  Google Scholar 

  • Costa PF, Albers HJ, Linssen JEA et al (2017) Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip 17:2785–2792

    Article  CAS  PubMed  Google Scholar 

  • Cross VL, Zheng Y, Won Choi N et al (2010) Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31:8596–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Lizarrondo SM, Gakuba C, Herbig BA et al (2017) Potent thrombolytic effect of N-acetylcysteine on arterial thrombi. Circulation 136:646–660

    Article  PubMed Central  CAS  Google Scholar 

  • de Witt SM, Swieringa F, Cavill R et al (2014) Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun 5:4257

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Zhang X, Chen Z et al (2019) A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug-drug interaction. Biomicrofluidics 13:024101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846

    Article  CAS  PubMed  Google Scholar 

  • Duval K, Grover H, Han L-H et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology 32:266–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Editorial (2013) Of men, not mice. Nat Med 19:379–379

    Article  CAS  Google Scholar 

  • Estrada R, Giridharan GA, Nguyen M-D et al (2011) Endothelial cell culture model for replication of physiological profiles of pressure, flow, stretch, and shear stress in vitro. Anal Chem 83:3170–3177

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AW, Feigel A, Shevkoplyas SS et al (2007) Muscular thin films for building actuators and powering devices. Science 317:1366–1370

    Article  CAS  PubMed  Google Scholar 

  • Fenech M, Girod V, Claveria V et al (2019) Microfluidic blood vasculature replicas using backside lithography. Lab Chip 19:2096–2106

    Article  CAS  PubMed  Google Scholar 

  • Fernandes AC, Gernaey KV, Krühne U (2018) Connecting worlds – a view on microfluidics for a wider application. Biotechnol Adv 36:1341–1366

    Article  CAS  PubMed  Google Scholar 

  • Flanagan TC, Cornelissen C, Koch S et al (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397

    Article  CAS  PubMed  Google Scholar 

  • Gimbrone MAJ, Topper JN, Nagel T, Anderson KR, Garcia-Cardeña G (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesisa. Ann N Y Acad Sci 902:230–240

    Article  CAS  PubMed  Google Scholar 

  • Grebenyuk S, Ranga A (2019) Engineering organoid vascularization. Frontiers in Bioengineering and. Biotechnology 7:39

    Google Scholar 

  • Grigoryan B, Paulsen SJ, Corbett DC et al (2019) Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover SP, Bergmeier W, Mackman N (2018) Platelet signaling pathways and new inhibitors. Arterioscler Thromb Vasc Biol 38:e28–e35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guck J (2019) Some thoughts on the future of cell mechanics. Biophys Rev 11:667–670

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez E, Petrich BG, Shattil SJ et al (2008) Microfluidic devices for studies of shear-dependent platelet adhesion. Lab Chip 8:1486–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha H, Lee SJ (2013) Hemodynamic features and platelet aggregation in a stenosed microchannel. Microvasc Res 90:96–105

    Article  PubMed  Google Scholar 

  • Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han MK, McLaughlin VV, Criner GJ, Martinez FJ (2007) Pulmonary diseases and the heart. Circulation 116:2992–3005

    Article  PubMed  Google Scholar 

  • Hansen RR, Wufsus AR, Barton ST et al (2013) High content evaluation of shear dependent platelet function in a microfluidic flow assay. Ann Biomed Eng 41:250–262

    Article  PubMed  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40

    Article  CAS  PubMed  Google Scholar 

  • Hedman ÅK, Hage C, Sharma A et al (2020) Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 106:342

    Article  PubMed  Google Scholar 

  • Herbig BA, Diamond SL (2017) Thrombi produced in stagnation point flows have a core–shell structure. Cell Mol Bioeng 10:515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herland A, Maoz BM, Das D et al (2020) Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nature Biomedical Engineering 4:421–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández Vera R, O’Callaghan P, Fatsis-Kavalopoulos N, Kreuger J (2019) Modular microfluidic systems cast from 3D-printed molds for imaging leukocyte adherence to differentially treated endothelial cultures. Sci Rep 9:11321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hockaday LA, Kang KH, Colangelo NW et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005–035005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Li Y, Li J, Chen H (2020) Effects of altered blood flow induced by the muscle pump on thrombosis in a microfluidic venous valve model. Lab Chip 20:2473–2481

    Article  CAS  PubMed  Google Scholar 

  • Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huse M (2017) Mechanical forces in the immune system. Nat Rev Immunol 17:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishahak M, Hill J, Amin Q et al (2020) Modular microphysiological system for modeling of biologic barrier function. Frontiers in Bioengineering and. Biotechnology 8:581163

    Google Scholar 

  • Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape — the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825–833

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Graveline A, Waterhouse A et al (2016) A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat Commun 7:10176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalili-Firoozinezhad S, Prantil-Baun R, Jiang A et al (2018) Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis 9:223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jastrzebska E, Tomecka E, Jesion I (2016) Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 75:67–81

    Article  CAS  PubMed  Google Scholar 

  • Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin ZH, Liu YL, Fan WT, Huang WH (2020) Integrating flexible electrochemical sensor into microfluidic chip for simulating and monitoring vascular mechanotransduction. Small 16:1903204

    Article  CAS  Google Scholar 

  • Jung SY, Yeom E (2017) Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: effects of tile size on the detection of platelet adhesion in a correlation map. Biomicrofluidics 11:024119

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamble H, Vadivelu R, Barton M et al (2017) An electromagnetically actuated double-sided cell-stretching device for mechanobiology research. Micromachines 8:256

    Article  PubMed Central  Google Scholar 

  • Khoshmanesh F, Thurgood P, Pirogova E, Nahavandi S, Baratchi S (2021) Wearable sensors: at the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens Bioelectron 176:112946

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Kim G (2018) Intestinal villi model with blood capillaries fabricated using collagen-based bioink and dual-cell-printing process. ACS Appl Mater Interfaces 10:41185–41196

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Lobatto ME, Kawahara T et al (2014) Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Natl Acad Sci 111:1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim C, Kasuya J, Jeon J, Chung S, Kamm RD (2015) A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 15:301–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Chung M, Ahn J, Lee S, Jeon NL (2016a) Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16:4189–4199

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Chung M, Jeon NL (2016b) Three-dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro. Biomaterials 78:115–128

    Article  CAS  PubMed  Google Scholar 

  • Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  CAS  PubMed  Google Scholar 

  • Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113:3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg M, Fläschner G, Alsteens D et al (2019) Atomic force microscopy-based mechanobiology. Nature Reviews Physics 1:41–57

    Article  Google Scholar 

  • Kwon S, Kurmashev A, Lee MS, Kang JH (2020) An inflammatory vascular endothelium-mimicking microfluidic device to enable leukocyte rolling and adhesion for rapid infection diagnosis. Biosens Bioelectron 168:112558

    Article  CAS  PubMed  Google Scholar 

  • Lai A, Chen YC, Cox CD et al (2021) Analyzing the shear-induced sensitization of mechanosensitive ion channel Piezo-1 in human aortic endothelial cells. J Cell Physiol 236:2976–2987

    Article  CAS  PubMed  Google Scholar 

  • Laschke MW, Menger MD (2016) Prevascularization in tissue engineering: current concepts and future directions. Biotechnol Adv 34:112–121

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Park W, Ryu H, Jeon NL (2014) A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics 8:054102–054102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee A, Hudson AR, Shiwarski DJ et al (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365:482–487

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ku DN, Forest CR (2012) Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 12:1355–1362

    Article  CAS  PubMed  Google Scholar 

  • Li X, George SM, Vernetti L, Gough AH, Taylor DL (2018) A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18:2614–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Hu C, Wang P et al (2019) Indoor nanoscale particulate matter-induced coagulation abnormality based on a human 3D microvascular model on a microfluidic chip. Journal of Nanobiotechnology 17:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin NYC, Homan KA, Robinson SS et al (2019) Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci 116:5399–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Y, Rubin J, Deng Y et al (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756–762

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Bolonduro OA, Hu N et al (2020a) Heart-on-a-chip model with integrated extra- and intracellular bioelectronics for monitoring cardiac electrophysiology under acute hypoxia. Nano Lett 20:2585–2593

    Article  CAS  PubMed  Google Scholar 

  • Liu L, He F, Yu Y, Wang Y (2020b) Application of FRET biosensors in mechanobiology and mechanopharmacological screening. Frontiers in Bioengineering and. Biotechnology 8:595497

    Google Scholar 

  • Mandy B, Esch DJP, Shuler ML, Stokol T (2011) Characterization of in vitro endothelial linings grown within microfluidic channels. Tissue Eng A 17:2965–2971

    Article  CAS  Google Scholar 

  • Mann JM, Lam RHW, Weng S, Sun Y, Fu J (2012) A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab Chip 12:731–740

    Article  CAS  PubMed  Google Scholar 

  • Mannino RG, Myers DR, Ahn B et al (2015) Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions. Sci Rep 5:12401

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsano A, Conficconi C, Lemme M et al (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16:599–610

    Article  CAS  PubMed  Google Scholar 

  • Mathur A, Loskill P, Shao K et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur T, Singh KA, Pandian NKR et al (2019) Organ-on-chips made of blood: endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips. Lab Chip 19:2500–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAleer CW, Pointon A, Long CJ et al (2019) On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci Rep 9:9619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McFadyen JD, Schaff M, Peter K (2018) Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat Rev Cardiol 15:181–191

    Article  CAS  PubMed  Google Scholar 

  • Menon NV, Tay HM, Wee SN, Li KHH, Hou HW (2017) Micro-engineered perfusable 3D vasculatures for cardiovascular diseases. Lab Chip 17:2960–2968

    Article  CAS  PubMed  Google Scholar 

  • Menon NV, Tay HM, Pang KT et al (2018) A tunable microfluidic 3D stenosis model to study leukocyte-endothelial interactions in atherosclerosis. APL Bioengineering 2:016103

    Article  CAS  Google Scholar 

  • Michelle BC, Jordan AW, Julia F et al (2017) On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 12:865

    Article  CAS  Google Scholar 

  • Michielin F, Serena E, Pavan P, Elvassore N (2015) Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. RSC Adv 5:98429–98439

    Article  CAS  Google Scholar 

  • Mohammed D, Versaevel M, Bruyère C et al (2019a) Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Frontiers in Bioengineering and Biotechnology 7:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammed M, Thurgood P, Gilliam C et al (2019b) Studying the response of aortic endothelial cells under pulsatile flow using a compact microfluidic system. Anal Chem 91:12077–12084

    Article  CAS  PubMed  Google Scholar 

  • Moraes C, Likhitpanichkul M, Lam CJ et al (2013) Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr Biol 5:673–680

    Article  CAS  Google Scholar 

  • Muehleder S, Ovsianikov A, Zipperle J, Redl H, Holnthoner W (2014) Connections matter: channeled hydrogels to improve vascularization. Frontiers in Bioengineering and Biotechnology 2:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthard RW, Diamond SL (2013) Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient. Lab Chip 13:1883–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahavandi S, Baratchi S, Soffe R et al (2014) Microfluidic platforms for biomarker analysis. Lab Chip 14:1496–1514

    Article  CAS  PubMed  Google Scholar 

  • Neeves KB, Diamond SL (2008) A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood. Lab Chip 8:701–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neeves KB, Illing DAR, Diamond SL (2010) Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J 98:1344–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen D-HT, Stapleton SC, Yang MT et al (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci 110:6712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Thurgood P, Zhu JY et al (2018) “Do-it-in-classroom” fabrication of microfluidic systems by replica moulding of pasta structures. Biomicrofluidics 12:044115

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen N, Thurgood P, Arash A et al (2019) Inertial microfluidics with integrated vortex generators using liquid metal droplets as fugitive ink. Adv Funct Mater 29:1901998

    Article  CAS  Google Scholar 

  • Novak R, Ingram M, Marquez S et al (2020) Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nature Biomedical Engineering 4:407–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh S, Ryu H, Tahk D et al (2017) “Open-top” microfluidic device for in vitro three-dimensional capillary beds. Lab Chip 17:3405–3414

    Article  CAS  PubMed  Google Scholar 

  • Ong SG, Huber BC, Lee WH et al (2015) Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell-derived cardiomyocytes after acute myocardial infarction. Circulation 132:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong LJY, Ching T, Chong LH et al (2019) Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab Chip 19:2178–2191

    Article  CAS  PubMed  Google Scholar 

  • Osnabrugge RLJ, Mylotte D, Head SJ et al (2013) Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol 62:1002–1012

    Article  PubMed  Google Scholar 

  • Owens CE, Hart AJ (2018) High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip 18:890–901

    Article  CAS  PubMed  Google Scholar 

  • Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG (2017) The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 69:1952–1967

    Article  PubMed  Google Scholar 

  • Parekh DP, Ladd C, Panich L, Moussa K, Dickey MD (2016) 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16:1812–1820

    Article  CAS  PubMed  Google Scholar 

  • Park MH, Chhai P & Rhee K (2019) Analysis of flow and wall deformation in a stenotic flexible channel containing a soft core, simulating atherosclerotic arteries. International Journal of Precision Engineering and Manufacturing.

  • Polacheck WJ, Kutys ML, Tefft JB, Chen CS (2019) Microfabricated blood vessels for modeling the vascular transport barrier. Nat Protoc 14:1425–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Zheng Y, Hu J et al (2014) Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface 11:20130852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rana A, Westein E, Be N, Hagemeyer CE (2019) Shear-dependent platelet aggregation: mechanisms and therapeutic opportunities. Frontiers in Cardiovascular Medicine 6:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regnault C, Dheeman DS, Hochstetter A (2018) Microfluidic devices for drug assays. High Throughput 7:18

    Article  PubMed Central  CAS  Google Scholar 

  • Ribas J, Zhang YS, Pitrez PR et al (2017) Biomechanical strain exacerbates inflammation on a Progeria-on-a-Chip Model. Small 13

  • Ryu H, Oh S, Lee HJ et al (2015) Engineering a blood vessel network module for body-on-a-chip applications. Journal of Laboratory Automation 20:296–301

    Article  CAS  PubMed  Google Scholar 

  • Salehi SS, Shamloo A, Hannani SK (2020) Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits. Biophys Rev 12:123–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Salminen AT, Zhang J, Madejski GR et al (2019) Ultrathin dual-scale nano- and microporous membranes for vascular transmigration models. Small 15

  • Santos A, Fernández-Friera L, Villalba M et al. (2015) Cardiovascular imaging: what have we learned from animal models? Frontiers in Pharmacology 6.

  • Sato K, Nitta M, Ogawa A (2019) A microfluidic cell stretch device to investigate the effects of stretching stress on artery smooth muscle cell proliferation in pulmonary arterial hypertension. Inventions 4:1

    Article  Google Scholar 

  • Sei YJ, Ahn SI, Virtue T, Kim T, Kim Y (2017) Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor. Sci Rep 7:10019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. J Cell Biochem 102:840–847

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Conegliano D, Farrell M et al (2017) A microengineered model of RBC transfusion-induced pulmonary vascular injury. Sci Rep 7:3413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP (2018) Machine learning in cardiovascular medicine: are we there yet? Heart 104:1156–1164

    Article  PubMed  Google Scholar 

  • Shao J, Wu L, Wu J et al (2009) Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress. Lab Chip 9:3118–3125

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Mann JM, Chen W, Fu J (2014) Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction. Integr Biol 6:300–311

    Article  CAS  Google Scholar 

  • Shelton SE & Kamm RD. In Biomechanics of coronary atherosclerotic plaque vol. 4 (eds Jacques Ohayon, Gérard Finet, & Roderic Ivan Pettigrew) 303-319 (Academic Press, 2020).

  • Shimizu A, Goh WH, Itai S et al (2020) ECM-based microchannel for culturingin vitrovascular tissues with simultaneous perfusion and stretch. Lab Chip 20:1917–1927

    Article  CAS  PubMed  Google Scholar 

  • Shin Y, Lim S, Kim J et al (2019) Emulating endothelial dysfunction by implementing an early atherosclerotic microenvironment within a microfluidic chip. Lab Chip 19:3664–3677

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Le Gac S, Verdonschot N et al (2016) Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Sci Rep 6:29510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sniadecki NJ, Anguelouch A, Yang MT et al (2007) Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci 104:14553–14558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobrino A, Phan DTT, Datta R et al (2016) 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6:31589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soleimani S, Shamsi M, Ghazani MA et al (2018) Translational models of tumor angiogenesis: a nexus of in silico and in vitro models. Biotechnol Adv 36:880–893

    Article  CAS  PubMed  Google Scholar 

  • Spicer CD (2020) Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 11:184–219

    Article  CAS  Google Scholar 

  • Stanfield CL (2016) Principles of human physiology. Global Edition.

  • Sun T, Shi Q, Liang Q et al (2020) Fabrication of vascular smooth muscle-like tissues based on self-organization of circumferentially aligned cells in microengineered hydrogels. Lab Chip 20:3120–3131

    Article  CAS  PubMed  Google Scholar 

  • Swiatlowska P, Sanchez-Alonso JL, Wright PT, Novak P, Gorelik J (2020) Microtubules regulate cardiomyocyte transversal Young’s modulus. Proc Natl Acad Sci 117:2764–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szydzik C, Niego B, Dalzell G et al (2016) Fabrication of complex PDMS microfluidic structures and embedded functional substrates by one-step injection moulding. RSC Adv 6:87988–87994

    Article  CAS  Google Scholar 

  • Szydzik C, Brazilek RJ, Khoshmanesh K et al (2018) Elastomeric microvalve geometry affects haemocompatibility. Lab Chip 18:1778–1792

    Article  CAS  PubMed  Google Scholar 

  • Ta HT, Truong NP, Whittaker AK, Davis TP, Peter K (2018) The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opinion on Drug Delivery 15:33–45

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Scott D, Belchenko D, Qi HJ, Xiao L (2008) Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells. Biomed Microdevices 10:869–882

    Article  CAS  PubMed  Google Scholar 

  • Tay A, Pavesi A, Yazdi SR, Lim CT, Warkiani ME (2016) Advances in microfluidics in combating infectious diseases. Biotechnol Adv 34:404–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas A, Daniel Ou-Yang H, Lowe-Krentz L, Muzykantov VR, Liu Y (2016) Biomimetic channel modeling local vascular dynamics of pro-inflammatory endothelial changes. Biomicrofluidics 10:014101–014101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thurgood P, Zhu JY, Nguyen N et al (2018) A self-sufficient pressure pump using latex balloons for microfluidic applications. Lab Chip 18:2730–2740

    Article  CAS  PubMed  Google Scholar 

  • Thurgood P, Suarez SA, Chen S et al (2019) Self-sufficient, low-cost microfluidic pumps utilising reinforced balloons. Lab Chip 19:2885–2896

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Lopez FJ, Rosengarten G, Westein E et al (2010) A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 10:291–302

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Lopez FJ, Rosengarten G, Nasabi M et al. (2013) An investigation on platelet transport during thrombus formation at micro-scale stenosis. PLoS ONE 8.

  • Tovar-Lopez F, Thurgood P, Gilliam C et al (2019) A microfluidic system for studying the effects of disturbed flow on endothelial cells. Frontiers in Bioengineering and Biotechnology 7:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsang HG, Rashdan NA, Whitelaw CBA et al (2016) Large animal models of cardiovascular disease. Cell Biochem Funct 34:113–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvirkun D, Grichine A, Duperray A, Misbah C, Bureau L (2017) Microvasculature on a chip: study of the endothelial surface layer and the flow structure of red blood cells. Sci Rep 7:45036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Helm MW, Odijk M, Frimat J-P et al (2016) Direct quantification of transendothelial electrical resistance in organs-on-chips. Biosens Bioelectron 85:924–929

    Article  PubMed  CAS  Google Scholar 

  • van Dijk CGM, Brandt MM, Poulis N et al (2020) A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix. Lab Chip 20:1827–1844

    Article  PubMed  Google Scholar 

  • van Engeland NCA, Pollet AMAO, den Toonder JMJ et al (2018) A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions. Lab Chip 18:1607–1620

    Article  PubMed  PubMed Central  Google Scholar 

  • Vedula EM, Alonso JL, Arnaout MA, Charest JL (2017) A microfluidic renal proximal tubule with active reabsorptive function. PLoS One 12:e0184330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vesperini D, Montalvo G, Qu B, Lautenschläger F (2021) Characterization of immune cell migration using microfabrication. Biophys Rev 13:185–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter Boron EB (2016) Medical physiology, 3rd, 3rd edn. Elsevier

  • Wang YI, Shuler ML (2018) UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. Lab Chip 18:2563–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westein E, Van Der Meer AD, Kuijpers MJE et al (2013) Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci U S A 110:1357–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JF, Simmons CA (2019) Microfluidic assay for the on-chip electrochemical measurement of cell monolayer permeability. Lab Chip 19:1060–1070

    Article  CAS  PubMed  Google Scholar 

  • Wootton DM, Ku DN (1999) Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1:299–329

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Piao J, Lee B, Lim C, Shin S (2020) Platelet thrombus formation by upstream activation and downstream adhesion of platelets in a microfluidic system. Biosens Bioelectron 165:112395

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Li Y, Zhao Q et al (2018) Liquid metal-based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. Lab Chip 18:785–792

    Article  CAS  PubMed  Google Scholar 

  • Yazdani A, Karniadakis GE (2016) Sub-cellular modeling of platelet transport in blood flow through microchannels with constriction. Soft Matter 12:4339–4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young EWK, Watson MWL, Srigunapalan S, Wheeler AR, Simmons CA (2010) Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection. Anal Chem 82:808–816

    Article  CAS  PubMed  Google Scholar 

  • Yun S-H, Sim E-H, Goh R-Y, Park J-I, Han J-Y (2016) Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int 2016:9060143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:13

    Article  Google Scholar 

  • Zarins CK, Giddens DP, Bharadvaj BK et al (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514

    Article  CAS  PubMed  Google Scholar 

  • Zervantonakis IK, Hughes-Alford SK, Charest JL et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci 109:13515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu Y, Ozbolat IT (2013) Direct bioprinting of vessel-like tubular microfluidic channels. Journal of Nanotechnology in Engineering and Medicine 4:0210011–0210017

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang YS, Arneri A, Bersini S et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Bishawi M, Zhang G et al (2020) Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun 11:5426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng W, Jiang B, Wang D et al (2012) A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip 12:3441–3450

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Chen J, López JA (2015) Flow-driven assembly of VWF fibres and webs in in vitro microvessels. Nat Commun 6:7858

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Huang R, Jiang B et al (2016) An early-stage atherosclerosis research model based on microfluidics. Small 12:2022–2034

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Niklason LE (2012) Microfluidic artificial “vessels” for dynamic mechanical stimulation of mesenchymal stem cells. Integr Biol 4:1487–1497

    Article  CAS  Google Scholar 

  • Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices 8:607–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JY, Suarez SA, Thurgood P et al (2019) Reconfigurable, self-sufficient convective heat exchanger for temperature control of microfluidic systems. Anal Chem 91:15784–15790

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.P. acknowledges the National Health and Medical Research Council (NHMRC) for funding “The Australian Centre for Electromagnetic Bioeffects Research” (APP1135076). K.P. acknowledges the NHMRC for a L3 Investigator Fellowship support (GNT1174098). S.B. acknowledges the Australian Research Council (ARC) for Discovery Grants (DE170100239 and DP200101248). K.K. acknowledges the ARC for Discovery Grant (DP180102049).

Author information

Authors and Affiliations

Authors

Contributions

N.N., P.T., N.C.S., and S.C. wrote the manuscript; E.P., S.B., and K.K. supervised the students; E.P., K.P., S.B., and K.K. generated the idea and wrote, reviewed, and edited the manuscript.

Corresponding authors

Correspondence to Sara Baratchi or Khashayar Khoshmanesh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N., Thurgood, P., Sekar, N.C. et al. Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 13, 769–786 (2021). https://doi.org/10.1007/s12551-021-00815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-021-00815-8

Keywords

Navigation