Skip to main content
Log in

Heterogeneous fluid-like movements of chromatin and their implications to transcription

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Eukaryotic chromatin is a complex of genome DNA and associated proteins, and its structure and dynamics play a crucial role in regulating DNA functions. Chromatin takes rather irregular structures in the nucleus and exhibits heterogeneous sub-diffusive movements as polymers fluctuating in a fluid state. Using genome-wide single-nucleosome tracking data, heterogeneity of movements was statistically analyzed, which categorized chromatin into two types: slow chromatin that moves under structurally constrained environments and fast chromatin that moves with less constraints. Interactions of chromatin to various protein factors determine the motional constraints. For example, loss of the cohesin complex that bundles the chromatin chains reduces the motional constraints and increases the population of fast chromatin. Another example is the transcriptional machinery. While it was previously thought that the transcriptional activity is associated with more open and dynamic chromatin structure, recent studies suggested a more nuanced role of transcription in chromatin dynamics: dynamic association/dissociation of active RNA polymerase II (RNAPII) and other transcription factors and Mediators (TF-Meds) transiently bridges transcriptionally active DNA regions, which forms a loose network of chromatin and constrains chromatin movement, enhancing the slow chromatin population. This new view on the dynamical effects of transcription urges a reflection on the traditional model of transcription factories and invites the more recent models of condensates/phase-separated liquid droplets of RNAPII, transcription factors, and Mediators. The combined procedure of genome-wide single-nucleosome tracking and its statistical analysis would unveil heterogeneity in the chromatin movement, which should provide a key to understanding the relations among chromatin dynamics, structure, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashwin SS, Nozaki T, Maeshima K, Sasai M (2019) Organization of fast and slow chromatin revealed by single-nucleosome dynamics. Proc Natl Acad Sci U S A 116:19939–19944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmik BP, Das R, Karmakar S (2016) Understanding Stokes-Einstein relation in supercooled liquids using random pinning. J Stat Mech 2016:074003

    Article  CAS  Google Scholar 

  • Bhowmik BP, Tah I, Karmakar S (2018) Non-Gaussianity of van Hove function and dynamic heterogeneity length scale. Phys Rev E 98:022122

    Article  CAS  PubMed  Google Scholar 

  • Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M, Kinrot S, Yamaya K, Boettiger AN, Zhuang X (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:eaau1783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P, Darzacq X, Zweckstetter M (2018) RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol 25:833–840

    Article  CAS  PubMed  Google Scholar 

  • Boija A, Klein IA, Sabari BR, Dall’Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM, Abraham BJ, Afeyan LK, Guo YE, Rimel JK, Fant CB, Schuijers J, Lee TI, Taatjes DJ, Young RA (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175:1842–855.e16

    Article  CAS  PubMed  Google Scholar 

  • Bronshtein I, Kepten E, Kanter I, Berezin S, Lindner M, Redwood AB, Mai S, Gonzalo S, Foisner R, Shav-Tal Y, Garini Y (2015) Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat Commun 6:8044

    Article  CAS  PubMed  Google Scholar 

  • Buckley MS, Lis JT (2014) Imaging RNA polymerase II transcription sites in living cells. Curr Opin Genet Dev 25:126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Chen C, Tan ZY, Huang Y, Shi J, Gan L (2018) Cryo-ET reveals the macromolecular reorganization of S. pombe mitotic chromosomes in vivo. Proc Natl Acad Sci U S A 115:10977–10982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Lim HH, Shi J, Tamura S, Maeshima M, Surana U et al (2016) Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo. Mol Biol Cell 27:3357–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T (2018) Dynamic interplay between enhancer-promoter topology and gene activity. Nat Genet 50:1296–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, Cisse II (2018) Mediator and RNA polymerase II clusters associate in transcription dependent condensates. Science 361:412–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361:eaar2555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  CAS  PubMed  Google Scholar 

  • Dekker J (2008) Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 283:34532–34540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pierro M, Potoyan DA, Wolynes PG, Onuchic JN (2018) Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes. Proc Natl Acad Sci U S A 115:7753–7758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dion V, Kalck V, Seeber A, Schleker T, Gasser SM (2013) Cohesin and the nucleolus constrain the mobility of spontaneous repair foci. EMBO Rep 14:984–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman LB, Fraser P (2012) Transcription factories: genetic programming in three dimensions. Curr Opin Genet Dev 22:110–114

    Article  CAS  PubMed  Google Scholar 

  • Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci U S A 105:19732–19737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feuerborn A, Cook PR (2015) Why the activity of a gene depends on its neighbors. Trends Genet 31:483–490

    Article  CAS  PubMed  Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A 73:1897–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn EH, Pegoraro G, Brandão HB, Valton AL, Oomen ME, Dekker J, Mirny L, Misteli T (2019) Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176:1502–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M et al (2012) Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep 13:992–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germier T, Kocanova S, Walther N, Bancaud A, Shaban HA, Sellou H, Politi AZ, Ellenberg J, Gallardo F, Bystricky K (2017) Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys J 113:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghamari A, van de Corput MP, Thongjuea S, van Cappellen WA, van Ijcken W, van Haren J, Soler E, Eick D, Lenhard B, Grosveld FG (2013) In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev 27:767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorisch SM, Wachsmuth M, Toth KF, Lichter P, Rippe K (2005) Histone acetylation increases chromatin accessibility. J Cell Sci 118:5825–5834

    Article  PubMed  CAS  Google Scholar 

  • Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajjoul H, Mathon J, Ranchon H, Goiffon I, Mozziconacci J, Albert B, Carrivain P, Victor JM, Gadal O, Bystricky K, Bancaud A (2013) High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 23:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heun P, Laroche T, Shimada K, Furrer P, Gasser SM (2001) Chromosome dynamics in the yeast interphase nucleus. Science. 294:2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Hihara S, Pack CG, Kaizu K, Tani T, Hanafusa T, Nozaki T et al (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2:1645–1656

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Zhang B (2019) Theory of active chromatin remodeling. Phys Rev Lett 123:208102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalashnikova AA, Porter-Goff ME, Muthurajan UM, Luger K, Hansen JC (2013) The role of the nucleosome acidic patch in modulating higher order chromatin structure. J R Soc Interface 10:20121022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura H, Sugaya K, Cook PR (2002) The transcription cycle of RNA polymerase II in living cells. J Cell Biol 159:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E (2005) Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J 89:4275–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q (2018) Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:318–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas JS, Zhang Y, Dudko OK, Murre C (2014) 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158:339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucy LB (1974) An iterative technique for the rectification of observed distributions. Astron J 79:745–754

    Article  Google Scholar 

  • Ma H, Tu LC, Chung YC, Naseri A, Grunwald D, Zhang S, Pederson T (2019) Cell cycle- and genomic distance-dependent dynamics of a discrete chromosomal region. J Cell Biol 218:1467–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machida S, Takizawa Y, Ishimaru M, Sugita Y, Sekine S, Nakayama JI et al (2018) Structural basis of heterochromatin formation by human HP1. Mol Cell 69:385–397 e8

    Article  CAS  PubMed  Google Scholar 

  • Maeshima K, Ide S, Hibino K, Sasai M (2016a) Liquid-like behavior of chromatin. Curr Opin Genet Dev 37:36–45

    Article  CAS  PubMed  Google Scholar 

  • Maeshima K, Rogge R, Tamura S, Joti Y, Hikima T, Szerlong H et al (2016b) Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J 35:1115–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeshima K, Ide S, Babokhov M (2019) Dynamic chromatin organization without the 30-nm fiber. Curr Opin Cell Biol 58:95–104

    Article  CAS  PubMed  Google Scholar 

  • Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A, Belmont A, Murray AW, Agard DA, Sedat JW (1997) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7:930–939

    Article  CAS  PubMed  Google Scholar 

  • Nagashima R, Hibino K, Ashwin SS, Babokhov M, Fujishiro S, Imai R, Nozaki T, Tamura S, Tani T, Kimura H, Shribak M, Kanemaki MT, Sasai M, Maeshima K (2019) Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. J Cell Biol 218:1511–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y et al (2012) Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J 31:1644–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, Joti Y, Tomita M, Hibino K, Kanemaki MT, Wendt KS, Okada Y, Nagai T, Maeshima K (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell 67:282–293.e7

    Article  CAS  PubMed  Google Scholar 

  • Ochiai H, Sugawara T, Yamamoto T (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res 43:e127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno M, Ando T, Priest DG, Kumar V, Yoshida Y, Taniguchi Y (2019) Sub-nucleosomal genome structure reveals distinct nucleosome folding motifs. Cell 176:520–534.e25

    Article  CAS  PubMed  Google Scholar 

  • Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC (2017) ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357:eaag0025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao SSP, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL (2017) Cohesin loss eliminates all loop domains. Cell 171:305–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci MA, Manzo C, Garcia-Parajo MF, Lakadamyali M, Cosma MP (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Richardson WH (1972) Bayesian-based iterative method of image restoration. J Opt Soc Am 62:55–59

    Article  Google Scholar 

  • Risca VI, Denny SK, Straight AF, Greenleaf WJ (2017) Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541:237–241

    Article  CAS  PubMed  Google Scholar 

  • Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112:E6456–E6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, Fonseca NA, Huber W, Haering CH, Mirny L, Spitz F (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaban HA, Barth R, Bystricky K (2018) Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res 46:e77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaban HA, Barth R, Bystricky K (2019) Nanoscale mapping of DNA dynamics in live human cells. bioRxiv. https://doi.org/10.1101/405969

  • Shi G, Thirumalai D (2019) Conformational heterogeneity in human interphase chromosome organization reconciles the FISH and Hi-C paradox. Nat Commun 10:3894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi G, Liu L, Hyeon C, Thirumalai D (2018) Interphase human chromosome exhibits out of equilibrium glassy dynamics. Nat Commun 9:3161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinkai S, Nozaki T, Maeshima K, Togashi Y (2016) Dynamic nucleosome movement provides structural information of topological chromatin domains in living human cells. PLoS Comput Biol 12:e1005136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song F, Chen P, Sun D, Wang M, Dong L, Liang D et al (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376–380

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Xing D, Chang CH, Li H, Xie XS (2018) Three-dimensional genome structures of single diploid human cells. Science 361:924–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Kuo J, Bae SC, Granick S (2012) When Brownian diffusion is not Gaussian. Nat Mater 11:481–485

    Article  CAS  PubMed  Google Scholar 

  • Winogradoff D, Echeverria I, Potoyan DA, Papoian GA (2015) The acetylation landscape of the H4 histone tail: disentangling the interplay between the specific and cumulative effects. J Am Chem Soc 137:6245–6253

    Article  CAS  PubMed  Google Scholar 

  • Zidovska A, Weitz DA, Mitchison TJ (2013) Micron-scale coherence in interphase chromatin dynamics. Proc Natl Acad Sci U S A 110:15555–15560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to all the collaborators Nozaki et al. (2017), Nagashima et al. (2019), and Ashwin et al. (2019) for their contribution, and Sasai and Maeshima Lab members for helpful discussion.

Funding

This work was supported by JST-CREST Grant JPMJCR15G2; the Riken Pioneering Project; JSPS-KAKENHI Grants JP19H01860, 19H05258, JP16H04746, 16H06279 (PAGS), and 19H05273; the Takeda Science Foundation; and NIG-JOINT 2016-A2 (6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. S. Ashwin, Kazuhiro Maeshima or Masaki Sasai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwin, S.S., Maeshima, K. & Sasai, M. Heterogeneous fluid-like movements of chromatin and their implications to transcription. Biophys Rev 12, 461–468 (2020). https://doi.org/10.1007/s12551-020-00675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00675-8

Keywords