Abstract
Transverse (t)-tubules are invaginations of the plasma membrane that form a complex network of ducts, 200–400 nm in diameter depending on the animal species, that penetrates deep within the cardiac myocyte, where they facilitate a fast and synchronous contraction across the entire cell volume. There is now a large body of evidence in animal models and humans demonstrating that pathological distortion of the t-tubule structure has a causative role in the loss of myocyte contractility that underpins many forms of heart failure. Investigations into the molecular mechanisms of pathological t-tubule remodelling to date have focused on proteins residing in the intracellular aspect of t-tubule membrane that form linkages between the membrane and myocyte cytoskeleton. In this review, we shed light on the mechanisms of t-tubule remodelling which are not limited to the intracellular side. Our recent data have demonstrated that collagen is an integral part of the t-tubule network and that it increases within the tubules in heart failure, suggesting that a fibrotic mechanism could drive cardiac junctional remodelling. We examine the evidence that the linkages between the extracellular matrix, t-tubule membrane and cellular cytoskeleton should be considered as a whole when investigating the mechanisms of t-tubule pathology in the failing heart.




Similar content being viewed by others
References
Allamand V, Briñas L, Richard P et al (2011) ColVI myopathies: where do we stand, where do we go? Skelet Muscle 1:30. doi:10.1186/2044-5040-1-30
Baddeley D, Jayasinghe ID, Cremer C et al (2009) Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media. Biophys J 96:L22–L24. doi:10.1016/j.bpj.2008.11.002
Baddeley D, Crossman D, Rossberger S et al (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS One 6:e20645
Balijepalli RC, Lokuta AJ, Maertz NA et al (2003) Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovasc Res 59:67–77
Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205. doi:10.1038/415198a
Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055
Bishop JE, Lindahl G (1999) Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res 42:27–44. doi:10.1016/S0008-6363(99)00021-8
Brandenburg S, Kohl T, Williams GSB et al (2016) Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 126:3999–4015. doi:10.1172/JCI88241
Brette F, Orchard C (2007) Resurgence of cardiac T-tubule research. Physiology 22:167–173
Brette F, Komukai K, Orchard CH (2002) Validation of formamide as a detubulation agent in isolated rat cardiac cells. Am J Physiol Heart Circ Physiol 283:H1720–H1728
Brette F, Sallé L, Orchard CH (2006) Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J 90:381–389
Caldwell JL, Smith CE, Taylor RF et al (2014) Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res 115:986–996. doi:10.1161/CIRCRESAHA.116.303448
Campbell KP, Kahl SD (1989) Association of dystrophin and an integral membrane glycoprotein. Nature 338:259–262. doi:10.1038/338259a0
Cannell MB, Soeller C (1997) Numerical analysis of ryanodine receptor activation by L-type channel activity in the cardiac muscle diad. Biophys J 73:112–122
Cannell MB, Crossman DJ, Soeller C (2006) Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure. J Muscle Res Cell Motil 27:297–306
Carver W, Nagpal ML, Nachtigal M et al (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69:116–122. doi:10.1161/01.RES.69.1.116
Chen B, Li Y, Jiang S et al (2012) β-adrenergic receptor antagonists ameliorate myocyte T-tubule remodeling following myocardial infarction. FASEB J 26:2531–2537. doi:10.1096/fj.11-199505
Cheng H, Lederer WJ, Cannell MB (1993) Calcium Sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262(5134):740–744. doi:10.1126/science.8235594
Cheng Y-J, Lang D, Caruthers SD et al (2012) Focal but reversible diastolic sheet dysfunction reflects regional calcium mishandling in dystrophic mdx mouse hearts. Am J Physiol Heart Circ Physiol 303:H559–H568. doi:10.1152/ajpheart.00321.2012
Cordeiro JM, Spitzer KW, Giles WR et al (2001) Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J Physiol 531:301–314
Crocini C, Coppini R, Ferrantini C et al (2014) Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci U S A 111:15196–15201. doi:10.1073/pnas.1411557111
Crossman DJ, Ruygrok PR, Soeller C et al (2011) Changes in the organization of excitation–contraction coupling structures in failing human heart. PLoS One 6:e17901
Crossman DJ, Young AA, Ruygrok PN et al (2015) T-tubule disease: relationship between T-tubule organization and regional contractile performance in human dilated cardiomyopathy. J Mol Cell Cardiol 84:170–178. doi:10.1016/j.yjmcc.2015.04.022
Crossman DJ, Shen X, Jüllig M et al (2017) Increased collagen within the transverse tubules in human heart failure. Cardiovasc Res
Emde B, Heinen A, Gödecke A et al (2014) Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction. Eur J Histochem 58:315–319. doi:10.4081/ejh.2014.2448
Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594. doi:10.1074/jbc.R200021200
Forbes MS, Sperelakis N (1982) Bridging junctional processes in couplings of skeletal, cardiac, and smooth muscle. Muscle Nerve 5:674–681. doi:10.1002/mus.880050903
Frisk M, Ruud M, Espe EKS et al (2016) Elevated ventricular wall stress disrupts cardiomyocyte t-tubule structure and calcium homeostasis. Cardiovasc Res 1–28. doi: 10.1093/cvr/cvw111
Galbiati F, Engelman JA, Volonte D et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin–glycoprotein complex, and T-tubule abnormalities. J Biol Chem 276:21425–21433. doi:10.1074/jbc.M100828200
Glukhov AV, Balycheva M, Sanchez-Alonso JL et al (2015) Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation 132:2372–2384. doi:10.1161/CIRCULATIONAHA.115.018131
Gomez AM, Valdivia HH, Cheng H et al (1997) Defective excitation–contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806. doi:10.1126/science.276.5313.800
Guo A, Zhang C, Wei S et al (2013) Emerging mechanisms of T-tubule remodeling in heart failure. Cardiovasc Res 98:204–215. doi:10.1093/cvr/cvt020
Guo A, Zhang X, Iyer VR et al (2014) Overexpression of junctophilin-2 does not enhance baseline function but attenuates heart failure development after cardiac stress. Proc Natl Acad Sci U S A 111:12240–12245. doi:10.1073/pnas.1412729111
Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176. doi:10.1002/anie.200802376
Heinzel FR, Bito V, Biesmans L et al (2008) Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res 102:338–346. doi:10.1161/CIRCRESAHA.107.160085
Hong T-T, Smyth JW, Gao D et al (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8:e1000312
Hong TT, Smyth JW, Chu KY et al (2012) BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm 9:812–820. doi:10.1016/j.hrthm.2011.11.055
Hong T, Yang H, Zhang S-S et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20:624–632. doi:10.1038/nm.3543
Huang C-K, Chen B-Y, Guo A et al (2016) Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model. Acta Pharmacol Sin 37:473–482. doi:10.1038/aps.2016.13
Huff J (2015) The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat Methods 12:i–ii. doi:10.1038/nmeth.f.388
Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812. doi:10.1038/nrm3896
Ibrahim M, Terracciano CM (2013) Reversibility of T-tubule remodelling in heart failure: mechanical load as a dynamic regulator of the T-tubules. Cardiovasc Res 98:225–232. doi:10.1093/cvr/cvt016
Ibrahim M, Al Masri A, Navaratnarajah M et al (2010) Prolonged mechanical unloading affects cardiomyocyte excitation–contraction coupling, transverse-tubule structure, and the cell surface. FASEB J 24:3321–3329
Ibrahim M, Navaratnarajah M, Siedlecka U et al (2012) Mechanical unloading reverses transverse tubule remodelling and normalizes local Ca(2+)-induced Ca(2+) release in a rodent model of heart failure. Eur J Heart Fail 14:571–580. doi:10.1093/eurjhf/hfs038
Ibrahim M, Siedlecka U, Buyandelger B et al (2013) A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet 22:372–383. doi:10.1093/hmg/dds434
Jayasinghe ID, Clowsley AH, Munro M et al (2015) Revealing t-tubules in striated muscle with new optical super-resolution microscopy techniques. Eur J Transl Myol 25:15–26. doi:10.4081/ejtm.2015.4747
Kaprielian RR, Stevenson S, Rothery SM et al (2000) Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 101:2586–2594. doi:10.1161/01.CIR.101.22.2586
Kawai M, Hussain M, Orchard CH (1999) Excitation–contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am J Physiol Heart Circ Physiol 277:H603–H609
Kohl T, Westphal V, Hell SW et al (2013) Superresolution microscopy in heart—cardiac nanoscopy. J Mol Cell Cardiol 58:13–21. doi:10.1016/j.yjmcc.2012.11.016
Kong CHT, Rog-Zielinska EA, Orchard CH et al (2017) Sub-microscopic analysis of t-tubule geometry in living cardiac ventricular myocytes using a shape-based analysis method. J Mol Cell Cardiol 108:1–7. doi:10.1016/j.yjmcc.2017.05.003
Kostin S, Scholz D, Shimada T et al (1998) The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res 294:449–460. doi:10.1007/s004410051196
Laflamme MA, Becker PL (1999) Gs and adenylyl cyclase in transverse tubules of heart: implications for cAMP-dependent signaling. Am J Physiol Heart Circ Physiol 277:H1841–H1848
Landstrom AP, Weisleder N, Batalden KB et al (2007) Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol 42:1026–1035. doi:10.1016/j.yjmcc.2007.04.006
Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031. doi:10.1161/01.RES.0000126574.61061.25
Laver DR, Kong CHT, Imtiaz MS et al (2013) Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 54:98–100. doi:10.1016/j.yjmcc.2012.10.009
Li H, Lichter JG, Seidel T et al (2015) Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, t-tubules, and Ca2+ sparks produced by dyssynchronous heart failure. Circ Heart Fail 8:1105–1114. doi:10.1161/CIRCHEARTFAILURE.115.002352
Lindner M, Brandt MC, Sauer H et al (2002) Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Cell Calcium 31:175–182
Louch WE, Bito V, Heinzel FR et al (2004) Reduced synchrony of Ca2+ release with loss of T-tubules—a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc Res 62:63–73
Louch WE, Mørk HK, Sexton J et al (2006) T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol 574:519–533. doi:10.1113/jphysiol.2006.107227
Luther DJ, Thodeti CK, Shamhart PE et al (2012) Absence of type VI collagen paradoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ Res 110:851–856. doi:10.1161/CIRCRESAHA.111.252734
Lyon AR, MacLeod KT, Zhang Y et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106:6854–6859
Lyon RC, Zanella F, Omens JH et al (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476. doi:10.1161/CIRCRESAHA.116.304937
Maron BJ, Ferrans VJ, Roberts WC (1975) Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am J Pathol 79:387–434
McNary TG, Bridge JHB, Sachse FB (2011) Strain transfer in ventricular cardiomyocytes to their transverse tubular system revealed by scanning confocal microscopy. Biophys J 100:L53–L55. doi:10.1016/j.bpj.2011.03.046
Minetti C, Sotgia F, Bruno C et al (1998) Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18:365–368. doi:10.1038/ng0498-365
Muller AJ, Baker JF, DuHadaway JB et al (2003) Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol 23:4295–4306. doi:10.1128/MCB.23.12.4295-4306.2003
Nakayama S, Mukae H, Sakamoto N et al (2008) Pirfenidone inhibits the expression of HSP47 in TGF-β1-stimulated human lung fibroblasts. Life Sci 82:210–217. doi:10.1016/j.lfs.2007.11.003
Nguyen DT, Ding C, Wilson E et al (2010) Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm 7:1438–1445. doi:10.1016/j.hrthm.2010.04.030
Ohler A, Weisser-Thomas J, Piacentino V et al (2009) Two-photon laser scanning microscopy of the transverse-axial tubule system in ventricular cardiomyocytes from failing and non-failing human hearts. Cardiol Res Pract 2009:802373. doi:10.4061/2009/802373
Peter AK, Cheng H, Ross RS et al (2011) The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol 31:83–88. doi:10.1016/j.ppedcard.2011.02.003
Pinali C, Bennett H, Davenport JB et al (2013) Three-dimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res 113:1219–1230. doi:10.1161/CIRCRESAHA.113.301348
Prins KW, Humston JL, Mehta A et al (2009) Dystrophin is a microtubule-associated protein. J Cell Biol 186:363–369. doi:10.1083/jcb.200905048
Quick AP, Wang Q, Philippen LE et al (2016) Striated muscle preferentially expressed protein kinase (SPEG) is essential for cardiac function by regulating junctional membrane complex activity. Circ Res CIRCRESAHA.116.309977. doi: 10.1161/CIRCRESAHA.116.309977
Rafii MS, Hagiwara H, Mercado ML et al (2006) Biglycan binds to α- and γ-sarcoglycan and regulates their expression during development. J Cell Physiol 209:439–447. doi:10.1002/jcp.20740
Renley BA, Rybakova IN, Amann KJ, Ervasti JM (1998) Dystrophin binding to nonmuscle actin. Cytoskeleton 41:264–270. doi:10.1002/(SICI)1097-0169(1998)41:3<264::AID-CM7>3.0.CO;2-Z
Richards MA, Clarke JD, Saravanan P et al (2011) Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol 301:H1996–H2005
Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119. doi:10.1161/hh1101.091862
Sacconi L, Ferrantini C, Lotti J et al (2012) Action potential propagation in transverse-axial tubular system is impaired in heart failure. Proc Natl Acad Sci U S A 109:5815–5819. doi:10.1073/pnas.1120188109
Sachse FB, Torres NS, Savio-Galimberti E et al (2012) Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ Res 110:588–597
Savio-Galimberti E, Frank J, Inoue M et al (2008) Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images. Biophys J 95:2053–2062
Schaper J, Froede R, Hein ST et al (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514
Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19:173–185. doi:10.1007/s10741-012-9365-4
Sher AA, Noble PJ, Hinch R et al (2008) The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes. Prog Biophys Mol Biol 96:377–398. doi:10.1016/j.pbiomolbio.2007.07.018
Sipilä L, Ruotsalainen H, Sormunen R et al (2007) Secretion and assembly of type IV and VI collagens depend on glycosylation of hydroxylysines. J Biol Chem 282:33381–33388. doi:10.1074/jbc.M704198200
Söderström KO (1987) Lectin binding to collagen strands in histologic tissue sections. Histochem Cell Biol 87:557–560
Soeller C, Baddeley D (2013) Super-resolution imaging of EC coupling protein distribution in the heart. J Mol Cell Cardiol 58:32–40. doi:10.1016/j.yjmcc.2012.11.004
Soeller C, Cannell MB (1999) Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res 84:266–275
Soeller C, Cannell MB (2004) Analysing cardiac excitation–contraction coupling with mathematical models of local control. Prog Biophys Mol Biol 85:141–162. doi:10.1016/j.pbiomolbio.2003.12.006
Song L-S, Sobie EA, McCulle S et al (2006) Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci U S A 103:4305–4310. doi:10.1073/pnas.0509324103
Stegemann M, Meyer R, Haas HG et al (1990) The cell surface of isolated cardiac myocytes—a light microscope study with use of fluorochrome-coupled lectins. J Mol Cell Cardiol 22:787–803
Stern MD (1992) Theory of excitation–contraction coupling in cardiac muscle. Biophys J 63:497–517. doi:10.1016/S0006-3495(92)81615-6
Takeshima H, Komazaki S, Nishi M et al (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22
Tulla M, Pentikäinen OT, Viitasalo T et al (2001) Selective binding of collagen subtypes by integrin alpha1I, alpha2I, and alpha10I domains. J Biol Chem 276:48206–48212. doi:10.1074/jbc.M104058200
van Oort RJ, Garbino A, Wang W et al (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123:979–988. doi:10.1161/CIRCULATIONAHA.110.006437
Vatta M, Stetson SJ, Perez-Verdia A et al (2002) Molecular remodelling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet 359:936–941. doi:10.1016/S0140-6736(02)08026-1
Verhaert D, Richards K, Rafael-Fortney JA et al (2011) Cardiac involvement in patients with muscular dystrophies: magnetic resonance imaging phenotype and genotypic considerations. Circ Cardiovasc Imaging 4:67–76. doi:10.1161/CIRCIMAGING.110.960740
Viola HM, Adams AM, Davies SMK et al (2014) Impaired functional communication between the L-type calcium channel and mitochondria contributes to metabolic inhibition in the mdx heart. Proc Natl Acad Sci U S A 111:E2905–E2914. doi:10.1073/pnas.1402544111
Wagner E, Lauterbach MA, Kohl T et al (2012) Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res 111:402–414. doi:10.1161/CIRCRESAHA.112.274530
Walker MA, Williams GSB, Kohl T et al (2014) Superresolution modeling of calcium release in the heart. Biophys J 107:3018–3029. doi:10.1016/j.bpj.2014.11.003
Walker MA, Kohl T, Lehnart SE et al (2015) On the adjacency matrix of RyR2 cluster structures. PLoS Comput Biol 11:1–21. doi:10.1371/journal.pcbi.1004521
Wei S, Chow LTC, Sanderson JE (2000) Effect of carvedilol in comparison with metoprolol on myocardial collagen postinfarction. J Am Coll Cardiol 36:276–281. doi:10.1016/S0735-1097(00)00671-9
Wei S, Guo A, Chen B et al (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107:520–531. doi:10.1161/CIRCRESAHA.109.212324
Wiberg C, Hedbom E, Khairullina A et al (2001) Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. J Biol Chem 276:18947–18952. doi:10.1074/jbc.M100625200
Wiberg C, Heinegård D, Wenglén C et al (2002) Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 277:49120–49126. doi:10.1074/jbc.M206891200
Wright CS (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 178:91–104. doi:10.1016/0022-2836(84)90232-8
Wu C-YC, Jia Z, Wang W et al (2011) PI3Ks maintain the structural integrity of T-tubules in cardiac myocytes. PLoS One 6:e24404
Wu C-YC, Chen B, Jiang Y-P et al (2014) Calpain-dependent cleavage of junctophilin-2 and T-tubule remodeling in a mouse model of reversible heart failure. J Am Heart Assoc 3:e000527. doi:10.1161/JAHA.113.000527
Young AA, Dokos S, Powell KA et al (2001) Regional heterogeneity of function in nonischemic dilated cardiomyopathy. Cardiovasc Res 49:308–318
Zhang H-B, Li R-C, Xu M et al (2013) Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc Res 98:269–276. doi:10.1093/cvr/cvt030
Zhang C, Chen B, Guo A et al (2014) Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte T-tubule remodeling and Ca2+ handling dysfunction in heart failure. Circulation 129:1742–1750. doi:10.1161/CIRCULATIONAHA.113.008452
Ziegler WH, Gingras AR, Critchley DR et al (2008) Integrin connections to the cytoskeleton through talin and vinculin. Biochem Soc Trans 36:235–239. doi:10.1042/BST0360235
Zou Y, Zhang R-Z, Sabatelli P et al (2008) Muscle interstitial fibroblasts are the main source of collagen VI synthesis in skeletal muscle: implications for congenital muscular dystrophy types Ullrich and Bethlem. J Neuropathol Exp Neurol 67:144–154. doi:10.1097/nen.0b013e3181634ef7
Acknowledgements
We thank Auckland City Hospital and St. Vincent’s Hospital staff for assistance in obtaining tissue, and transplant recipients and donor families for donating tissue. Research funding was provided by the Auckland Medical Research Foundation (grant nos. 111009 and 1115014), Health Research Council of New Zealand (grant no. 12/240), Royal Society United Kingdom (grant no. RG.IMSB.107729) and Wellcome Trust (grant no. RG.IMSB.104532.054).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
David J. Crossman declares that he has no conflict of interest. Isuru D. Jayasinghe declares that he has no conflict of interest. Christian Soeller declares that he has no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.
All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.
Rights and permissions
About this article
Cite this article
Crossman, D.J., Jayasinghe, I.D. & Soeller, C. Transverse tubule remodelling: a cellular pathology driven by both sides of the plasmalemma?. Biophys Rev 9, 919–929 (2017). https://doi.org/10.1007/s12551-017-0273-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12551-017-0273-7