Skip to main content

Advertisement

Log in

Effect of essential oil from fresh leaves of Ocimum gratissimum L. on mycoflora during storage of peanuts in Benin

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of essential oil from fresh leaves of Sweet Fennel (Ocimum gratissimum) on mycoflora and Aspergillus section Flavi populations in stored peanuts. Aspergillus, Fusarium and Mucor spp. were the most common genera identified from peanuts at post-harvest in Benin by using a taxonomic schemes primarily based on morphological characters of mycelium and conidia. The isolated fungi include Aspergillus niger, A. parasiticus, A. flavus, A. ochraceus, Fusarium graminearum, F. solani, F. oxysporum and Mucor spp. The most prevalent fungi recorded were A. niger (94.18 %), A. flavus (83.72 %), A. parasiticus (77.90 %), A. ochraceus (72.09 %), F. graminearum (59.30 %) and F. oxysporum (51.16 %). Antifungal assay, performed by the agar medium assay, indicated that essential oil exhibited high antifungal activity against the growth of A. flavus, A. parasiticus, A. ochraceus and F. oxysporium. The minimal inhibitory concentration (MIC) of the essential oil was found to be 7.5 μl/ml for A. flavus and A. parasiticus and 5.5 μl/ml for A. ochraceus and F. oxysporium. The minimal fungicidal concentration (MFC) was recorded to be 8.0 μl/ml for A. flavus and A. parasiticus, 6,5 μl/ml for A. ochraceus and 6.0 μl/ml for F. oxysporium. The essential oil was found to be strongly fungicidal and inhibitory to aflatoxin production. Chemical analysis by GC/MS of the components of the oil led to the identification of 31 components characterized by myrcene (6.4 %), α-thujene (8.2 %), p-cymene (17.6 %), γ-terpinene (20.0 %), and thymol (26.9 %) as major components. The essential oil of Sweet Fennel, with fungal growth and mycotoxin inhibitory properties, offers a novel approach to the management of storage, thus opening up the possibility to prevent mold contamination in stored peanuts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography ⁄ mass spectrometry. Allured, Carol Stream

    Google Scholar 

  • Adjou ES, Dahouenon-Ahoussi E, Degnon R, Soumanou MM, Sohounhloue DCK (2012a) Investigations on bioactivity of essential oil of Ageratum conyzoides l., from Benin against the growth of fungi and aflatoxin production. Int J Pharm Sci Rev Res 13(1):143–148

    CAS  Google Scholar 

  • Adjou ES, Dahouenon-Ahoussi E, Degnon RG, Soumanou MM, Sohounhloue DCK (2012b) Bioefficacy of essential oil of Lantana camara from Benin against the growth of fungi and aflatoxin production. J Rec Adv Agric 1(4):112–121

    Google Scholar 

  • Adjou ES, Yehouenou B, Sossou CM, Soumanou MM, de Souza CA (2012c) Occurrence of mycotoxins and associated mycoflora in peanut cakes products (kluiklui) marketed in Benin. Afr J Biotechnol 11(78):14354–14360

    CAS  Google Scholar 

  • Atanda OO (2005) Development of diagnostic medium for direct visual determination of aflatoxin and its control using traditional spices. PhD thesis, University of Agriculture, Abaokuta

  • Atanda OO, Ogunrinu MC, Olorunfemi FM (2011) A neutral red desiccated coconut agar for rapid detection of aflatoxigenic fungi and visual determination of aflatoxins. World Mycotoxin J 4(2):147–155

    Article  CAS  Google Scholar 

  • Atanda SA, Aina JA, Agoda SA, Usanga OE, Pessu PO (2012) Mycotoxin management in agriculture: a review. J Anim Sci Adv 2:250–260

    Google Scholar 

  • Awad WA, Ghareeb K, Böhm J (2012) Occurrence, health risks and methods of analysis for Aflatoxins and Ochratoxin A. J Vet Anim Sci 2:1–10

    Google Scholar 

  • Awuah RT (1996) Possible utilization of plant product in grain storage. Proceeding of the worhshop in mycotoxin in food in Africa, Nov. 6–10, International Institute of Tropical Agriculture, Benin, p 32–33

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    Article  PubMed  CAS  Google Scholar 

  • Bankole SA (1997) Effect of essential oil from two Nigerian medicinal plants (Azadirachta indica and Morinda lucida) on growth and aflatoxin B1 production in maize grain by a toxigenic Aspergillus flavus. Lett Appl Microbiol 24:190–192

    Article  CAS  Google Scholar 

  • Bankole SA, Ogunsanwo BM, Eseigbe DA (2005) Aflatoxins in Nigerian dry-roasted groundnuts. Food Chem 89:503–506

    Article  CAS  Google Scholar 

  • Bassolé IHN, Lamien-Meda A, Bayala B, Tirogo S, Franz C, Novak J, Nebié RC, Dicko MH (2010) Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 15:7825–7839

    Article  PubMed  Google Scholar 

  • Brown D, McCormick SP, Alexander NA, Proctor RH, Desjardins AE (2001) A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32:121–133

    Article  PubMed  CAS  Google Scholar 

  • CEC (1998) Commission Regulation (EC) No. 1525/98. Official Journal of European Communities L20/143

  • Davis ND, Iyer SK, Diener UL (1987) Improved method of screening for aflatoxins with coconut agar medium. Appl Environ Microbiol 53:1593–1595

    PubMed  CAS  Google Scholar 

  • de Billerbeck VG, Roques CG, Bessière JM, Fonvieille JL, Dargent R (2001) Effect of Cymbopogon nardus (L) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger. Can J Microbiol 47:9–17

    PubMed  Google Scholar 

  • Ding X, Li P, Bai Y, Zhou H (2012) Aflatoxin B1 in post-harvest peanuts and dietary risk in China. Food Control 23:143–148

    Article  CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  PubMed  CAS  Google Scholar 

  • Ediage EN, Di Mavungu JD, Monbaliu S, Van Peteghem C, De Saeger S (2011) A validated multianalyte LC-MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples. J Agric Food Chem 59:5173–5180

    Article  PubMed  Google Scholar 

  • Fandohan P, Gbenou JD, Gnonlonfoun B, Hell K, Marasas WF, Wingfoeld MJ (2004) Effect of essential oils in the growth of Fusarium verticilloides and fumonisin contamination in Corn. J Agric Food Chem 52:6824–6829

    Article  PubMed  CAS  Google Scholar 

  • Filtenborg O, Frisvad JC, Thrane U (1995) Moulds in food spoilage. Int J Food Microbiol 33:85–102

    Article  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    Article  PubMed  CAS  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860

    Article  PubMed  CAS  Google Scholar 

  • Honfo FG, Hell K, Akissoe N, Dossa RAM, Hounhouigan JD (2010) Diversity and nutritional value of foods consumed by children in two agro-ecological zones of Benin. Afr J Food Sci 4:184–191

    CAS  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies and interactions with food matrix components. Front Microbiol 3(12):1–24

    Google Scholar 

  • Illiassa N (2004) Analyse de la gestion post-récolte de Vigna unguculata (WALP) et évaluation de l’importance insecticide des huiles essentielles de trois plantes aromatiques. Mémoire de maîtrise en Biologie Animale Faculté des Sciences, Université de Ngaoundéré

  • Khallil ARM (2001) Phytofungitoxic properties in the aqueous extracts of some plants. Pakistan J Biol Sci 4(4):392–394

    Article  Google Scholar 

  • Koutsoudaki C, Krsek M, Rodger A (2005) Chemical composition and antibacterial activity of the essential oil and the gum of Pista-cialentiscus Var. chia. J Agric Food Chem 53:7681–7685

    Article  PubMed  CAS  Google Scholar 

  • Kpadonou Kpoviessi BGH, Yayi Ladekan E, Kpoviessi DS, Gbaguidi F, Yehouenou B, Quetin-Leclercq J, Figueredo G, Moudachirou M, Accrombessi GC (2012) Chemical variation of essential oil constituents of Ocimum gratissimum L. from Benin, and impact on antimicrobial properties and toxicity against Artemia salina Leach. Chem Biodivers 9:139–150

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Dubey NK, Tiwari OP, Tripathi YB, Sinha KK (2007) Evaluation of some essential oils as botanical fungi toxicants for the protection of stored food commodities from fungal infestation. J Sci Food Agric 87:1737–1742

    Article  CAS  Google Scholar 

  • Kumar A, Shukla R, Singh P, Dubey NK (2009) Biodeterioration of some herbal raw materials by storage fungi and aflatoxin and assessment of Cymbpogon flexuosus essential oil and its components as antifungal. Int Biodeterior Biodegrad 63:712–716

    Article  CAS  Google Scholar 

  • Lisker N, Lillehoj EB (1991) Prevention of mycotoxin contamination (principally aflatoxins and Fusarium toxins) at the preharvest stage. In: Smith JE, Henderson RS (eds) Mycotoxins and animals foods. CRC, Boca Raton, pp 689–719

    Google Scholar 

  • Magan N, Sanchis V, Akdred D (2004) Role of spoilage fungi in seed deterioration. In: Aurora DK (Ed) Fungal biotechnology in agricultural, food and environmental applications. Marcell Dekker, New York, pp 311–323

  • Moosavy MH, Basti AA, Ali M (2008) Effect of Zataria multiflora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial. Int J Food Microbiol 43:69–76

    Google Scholar 

  • Mutegi CK, Ngugi HK, Hendriks SL, Jones RB (2009) Prevalence and factors associated with aflatoxin contamination of peanuts from Western Kenya. Int J Food Microbiol 130:27–34

    Article  PubMed  CAS  Google Scholar 

  • Nesci A, Montemarani A, Etcheverry M (2011) Assessment of mycoflora and infestation of insects, vector of Aspergillus section Flavi, in stored peanut from Argentina. Mycotox Res 27:5–12

    Article  CAS  Google Scholar 

  • Nguefack J, Lekagne Dongmo JB, Dakole CD, Leth V, Vismer HF, Torp J, Guemdjom EFN, Mbeffo M, Tamgue O, Fotio D, Amvam Zollo PH, Nkengfack AE (2009) Food preservative potential of essential oils and fractions from Cymbopogon citrates and Thymus vulgaris against mycotoxigenic fungi. Int J Food Microbiol 131:151–156

    Article  PubMed  CAS  Google Scholar 

  • Nguyen MT (2007) Identification des espèces de moisissures potentiellement productrices de mycotoxines dans le riz commercialisé dans cinq provinces de la région centrale du Vietman : Etude des conditions pouvant induire la production de mycotoxines. Thèse de doctorat, Institut National Polytechnique de Toulouse (INPT), Toulouse

  • Pelissari FM, Grossmann MVE, Yamashita F, Pined EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504

    Article  PubMed  CAS  Google Scholar 

  • Pitt JI, Hocking AD, Bhudhasamai K, Miscamble BF, Wheeler KA, Tanboon EKP (1994) The normal mycoflora of commodities from Thailand: beans, rice, small grains and other commodities. Int J Food Microbiol 23:35–53

    Article  PubMed  CAS  Google Scholar 

  • Prakash B, Shukla R, Singh P, Mishra PK, Dubey NK, Kharwar RN (2010) Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices. Food Res Int 10:128–132

    Google Scholar 

  • Rao A, Zhang Y, Muend S, Rao R (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Chemother 54:5062–5069

    Article  PubMed  CAS  Google Scholar 

  • Rasooli I, Abyaneh MR (2004) Inhibitory effects of thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control 15:479–483

    Article  CAS  Google Scholar 

  • Reddy BN, Raghavender CR (2007) Outbreaks of aflatoxicoses in India. Afr J Food Agric Nutr Dev 7(5):1–15

    Google Scholar 

  • Reddy KRN, Nurdijati SB, Salleh B (2010) An overview of plant-derived products on control of mycotoxicogenic fungi and mycotoxins. Asian J Plant Sci 9(3):126–133

    Article  Google Scholar 

  • Sánchez-González L, Vargas M, González-Martínez C, Chiralt A, Cháfer M (2011) Use of essential oils inbioactive edible coatings: a review. Food Eng Rev 3:1–16

    Article  Google Scholar 

  • Singh K, Frisvad JC, Thrane U, Mathu SB (1991) An illustrated manual on identification of some seed borne Aspergilli, Fusaria, Penicillia and their mycotoxins. Danish Government, Institute of seed pathology for developing countries, Hellerup, Denmark

  • Suhr KI, Nielsen PV (2003) Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J Appl Microbiol 94(4):665–674

    Article  PubMed  CAS  Google Scholar 

  • Sultan Y, Magan N (2010) Mycotoxigenic fungi in peanuts from different geographic regions of Egypt. Mycotox Res 26:133–140

    Article  Google Scholar 

  • Tabuc C (2007) Flore fongique de différents substrats et conditions optimales de production des mycotoxines. Thèse de doctorat, Institut National Polytechnique de Toulouse et Université de Bucarest, Toulouse

  • Tatsadjieu N, Jazet M, Ngassoum MB, Etoa X, Mbofung CMF (2009) Investigations on the essential oil of Lippia rugosa from Cameroon for its potential use as antifungal agent against Aspergillus flavus Link ex. Fries. Food Control 2:161–166

    Article  Google Scholar 

  • Yaw AJ, Richard A, Osei SK, Seth OA, Adelaide A (2008) Chemical composition of groundnut, Arachis hypogaea (L) landraces. Afr J Biotechnol 7(13):2203–2208

    Google Scholar 

  • Yehouenou B, Noudogbessi JP, Sessou P, Wotto V, Avlessi F, Sohounhloué CKD (2010) Etude chimique et activités antimicrobiennes d’extraits volatils des feuilles et fruits de Xylopia aethiopica (Dunal) A. Rich. contre les pathogènes des denrées alimentaires. J Soc Ouest-Afr de Chim 29:19–27

    Google Scholar 

  • Yehouenou B, Ahoussi E, Sessou P, Alitonou GA, Toukourou F, Sohounhloue CKD (2012) Chemical composition and antimicrobial activities of essential oils (EO) extracted from leaves of Lippia rugosa A. Chev against foods pathogenic and adulterated microorganisms. Afr J Microbiol Res 6(26):5496–5505

    CAS  Google Scholar 

  • Yin MC, Tsao SM (1999) Inhibitory effect of seven Allium plants upon three Aspergillus species. Int J Food Microbiol 49:49–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Food Engineering of Polytechnic School of Abomey-Calavi University for their financial support. Authors wish to express their gratitude to Mrs. Boniface Yehouenou and Jean-Pierre Noudogbessi for the technical assistance.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Soumanou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adjou, E.S., Kouton, S., Dahouenon-Ahoussi, E. et al. Effect of essential oil from fresh leaves of Ocimum gratissimum L. on mycoflora during storage of peanuts in Benin. Mycotoxin Res 29, 29–38 (2013). https://doi.org/10.1007/s12550-012-0150-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-012-0150-y

Keywords

Navigation