Skip to main content

Advertisement

Log in

Development, validation and application of a multi-mycotoxin method for the analysis of whole wheat plants

  • Original Paper
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Mycotoxins are known to affect the health of humans and husbandry animals. In contrast to wheat grains used for food and feed, whole wheat plants are rarely analysed for mycotoxins, although contaminated straw could additionally expose animals to these toxic compounds. Since the entire wheat plant may also act as source of mycotoxins emitted into the environment, an analytical method was developed, optimised and validated for the analysis of 28 different mycotoxins in above-ground material from whole wheat plants. The method comprises solid-liquid extraction and a clean-up step using a Varian Bond Elut Mycotoxin® cartridge, followed by liquid chromatography with electrospray ionisation and triple quadrupole mass spectrometry. Total method recoveries for 26 out of 28 compounds were between 69 and 122% and showed limits of detection from 1 to 26 ng/gdry weight (dw). The overall repeatability for all validated compounds was on average 7%, and their mean ion suppression 65%. Those rather high matrix effects made it necessary to use matrix-matched calibrations to quantify mycotoxins within whole wheat plants. The applicability of this method is illustrated with data from a winter wheat test field to examine the risks of environmental contamination by toxins following artificial inoculation separately with four different Fusarium species. The selected data originate from samples of a part of the field which was inoculated with Fusarium crookwellense. In the wheat samples, various trichothecenes (3-acetyl-deoxynivalenol, deoxynivalenol, diacetoxyscirpenol, fusarenone-X, nivalenol, HT-2 toxin, and T-2 toxin) as well as beauvericin and zearalenone were identified with concentrations ranging from 32 ng/gdw to 12 × 103 ng/gdw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bennett JW (1987) Mycotoxins, mycotoxicoses, mycotoxicology and mycopathologia. Mycopathologia 100:3–5

    Article  PubMed  CAS  Google Scholar 

  • Berthiller F, Dall’Asta C, Schuhmacher R, Lemmens M, Adam G, Krska R (2005a) Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J Agric Food Chem 53:3421–3425

    Article  PubMed  CAS  Google Scholar 

  • Berthiller F, Schuhmacher R, Buttinger G, Krska R (2005b) Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1062:209–216

    Article  PubMed  CAS  Google Scholar 

  • Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108:611–624

    Article  CAS  Google Scholar 

  • Brinkmeyer U, Danicke S, Lehmann M, Valenta H, Lebzien P, Schollenberger M, Sudekum KH, Weinert J, Flachowsky G (2006) Influence of a Fusarium culmorum inoculation of wheat on the progression of mycotoxin accumulation, ingredient concentrations and ruminal in sacco dry matter degradation of wheat residues. Arch Anim Nutr 60:141–157

    Article  PubMed  CAS  Google Scholar 

  • Bucheli TD, Wettstein FE, Hartmann N, Erbs M, Vogelgsang S, Forrer H-R, Schwarzenbach RP (2008) Fusarium Mycotoxins: Overlooked Aquatic Micropollutants? J Agric Food Chem 56:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Buck HT, Nisi JE, Salomón N (2007) Wheat production in stressed environments, vol 1. Developments in plant breeding 11. Springer, Dordrecht

    Google Scholar 

  • Capriotti AL, Foglia P, Gubbiotti R, Roccia C, Samperi R, Lagana A (2010) Development and validation of a liquid chromatography/atmospheric pressure photoionization-tandem mass spectrometric method for the analysis of mycotoxins subjected to commission regulation (EC) No. 1881/2006 in cereals. J Chromatogr A 1217:6044–6051

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere C, Foglia P, Pastorini E, Samperi R, Lagana A (2005) Development of a multiresidue method for analysis of major Fusarium mycotoxins in corn meal using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 19:2085–2093

    Article  PubMed  CAS  Google Scholar 

  • Cavaliere C, Foglia P, Guarino C, Motto M, Nazzari M, Samperi R, Lagana A, Berardo N (2007) Mycotoxins produced by Fusarium genus in maize: determination by screening and confirmatory methods based on liquid chromatography tandem mass spectrometry. Food Chem 105:700–710

    Article  CAS  Google Scholar 

  • Christ DS, Godecke R, von Tiedemann A, Varrelmann M (2011) Pathogenicity, symptom development, and mycotoxin formation in wheat by Fusarium species frequently isolated from sugar beet. Phytopathology 101:1338–1345

    Article  PubMed  CAS  Google Scholar 

  • Cole RJ, Jarvis BB, Schweikert MA (2003) Handbook of Secondary Fungal Metabolites, vol III. Academic Press, New York

    Google Scholar 

  • Coppock RW, Jacobsen BJ (2009) Mycotoxins in animal and human patients. Toxicol Ind Health 25:637–655

    Article  PubMed  CAS  Google Scholar 

  • D’Arco G, Fernandez-Franzon M, Font G, Damiani P, Manes J (2008) Analysis of fumonisins B-1, B-2 and B-3 in corn-based baby food by pressurized liquid extraction and liquid chromatography/tandem mass spectrometry. J Chromatogr A 1209:188–194

    Article  PubMed  Google Scholar 

  • Desjardin AE (2006) Fusarium mycotoxins—chemistry, genetics and biology, vol 1, 1st edn. The American Phytopathological Society, St. Paul

  • Desmarchelier A, Oberson JM, Tella P, Gremaud E, Seefelder W, Mottier P (2010) Development and comparison of two multiresidue methods for the analysis of 17 mycotoxins in cereals by liquid chromatography electrospray ionization tandem mass spectrometry. J Agric Food Chem 58:7510–7519

    Article  PubMed  CAS  Google Scholar 

  • Di Mavungu JD, Monbaliu S, Scippo ML, Maghuin-Rogister G, Schneider YJ, Larondelle Y, Callebaut A, Robbens J, Van Peteghem C, De Saeger S (2009) LC-MS/MS multi-analyte method for mycotoxin determination in food supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:885–895

    Google Scholar 

  • Dorn B, Forrer HR, Jenny E, Wettstein FE, Bucheli TD, Vogelgsang S (2011) Fusarium species complex and mycotoxins in grain maize from maize hybrid trials and from grower's fields. J Appl Microbiol 111:693–706

    Article  PubMed  CAS  Google Scholar 

  • Driehuis F, Spanjer MC, Scholten JM, Giffel MCT (2008) Occurrence of mycotoxins in feedstuffs of dairy cows and estimation of total dietary intakes. J Dairy Sci 91:4261–4271

    Article  PubMed  CAS  Google Scholar 

  • Edwards SG (2009) Fusarium mycotoxin content of UK organic and conventional wheat. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:496–506

    PubMed  CAS  Google Scholar 

  • Engelhardt G, Ruhland M, Wallnofer PR (1999) Metabolism of mycotoxins in plants. Adv Food Sci 21:71–78

    CAS  Google Scholar 

  • Faberi A, Foglia P, Pastorini E, Samperi R, Lagana A (2005) Determination of type B fumonisin mycotoxins in maize and maize-based products by liquid chromatography/tandem mass spectrometry using a QqQ (linear ion trap) mass spectrometer. Rapid Commun Mass Spectrom 19:275–282

    Article  PubMed  CAS  Google Scholar 

  • FAO (1998) World reference base for soil resources. Food and Agriculture Organization of the United Nations, Rome

  • Frenich AG, Vidal JLM, Romero-Gonzalez R, Aguilera-Luiz MD (2009) Simple and high-throughput method for the multimycotoxin analysis in cereals and related foods by ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chem 117:705–712

    Article  CAS  Google Scholar 

  • Garon D, Richard E, Sage L, Bouchart V, Pottier D, Lebailly P (2006) Mycoflora and multimycotoxin detection in corn silage: Experimental study. J Agric Food Chem 54:3479–3484

    Article  PubMed  CAS  Google Scholar 

  • Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217:3929–3937

    Article  PubMed  CAS  Google Scholar 

  • Gutzwiller A, Gafner JL (2008) Mycotoxin contaminated bedding straw and sow fertility. Revue Suisse D’Agric 40:139–142

    Google Scholar 

  • Hartmann N, Erbs M, Wettstein FE, Schwarzenbach RP, Bucheli TD (2007) Quantification of estrogenic mycotoxins at the ng/L level in aqueous environmental samples using deuterated internal standards. J Chromatogr A 1138:132–140

    Article  PubMed  CAS  Google Scholar 

  • Hartmann N, Erbs M, Forrer H-R, Vogelgsang S, Wettstein FE, Schwarzenbach R, Bucheli TD (2008a) Occurrence of zearalenone on Fusarium graminearum infected wheat and maize fields in crop organs, soil and drainage water. Environ Sci Technol 42:5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Hartmann N, Erbs M, Wettstein FE, Hoerger CC, Schwarzenbach RP, Bucheli TD (2008b) Quantification of zearalenone in various solid agroenvironmental samples using D-6-zearalenone as the internal standard. J Agric Food Chem 56:2926–2932

    Article  PubMed  CAS  Google Scholar 

  • Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167:101–134

    Article  PubMed  CAS  Google Scholar 

  • Jiang W (2005) Good laboratory practice in analytical laboratory. J Am Sci 1:93–94

    Google Scholar 

  • Jin PG, Han Z, Cai ZX, Wu YJ, Ren YP (2010) Simultaneous determination of 10 mycotoxins in grain by ultra-high-performance liquid chromatography-tandem mass spectrometry using 13C15-deoxynivalenol as internal standard. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:1701–1713

    PubMed  CAS  Google Scholar 

  • Klotzel M, Lauber U, Humpf HU (2006) A new solid phase extraction clean-up method for the determination of 12 type A and B trichothecenes in cereals and cereal-based food by LC-MS/MS. Mol Nutr Food Res 50:261–269

    Article  PubMed  Google Scholar 

  • Krska R, Schubert-Ullrich P, Molinelli A, Sulyok M, Macdonald S, Crews C (2007a) Mycotoxin analysis: an update. Proc 12th IUPAC International Symposium on Mycotoxins and Phycotoxins, Istanbul, May 21-25 2007. Taylor & Francis, Abingdon, pp 152-163

  • Krska R, Welzig E, Boudra H (2007b) Analysis of Fusarium toxins in feed. Anim Feed Sci Technol 137:241–264

    Article  CAS  Google Scholar 

  • Kuiper-Goodman T (1998) Food safety: mycotoxins and phycotoxins in perspective. In: Miraglia M, VanEgmond HP, Brera C, Gilbert J (eds) Mycotoxins and pphycotoxins—developments in chemistry, toxicology and food safety. Alaken, Ft Collins, pp 25–48

    Google Scholar 

  • Lanier C, Heutte N, Richard E, Bouchart V, Lebailly P, Garon D (2009) Mycoflora and mycotoxin production in oilseed cakes during farm storage. J Agric Food Chem 57:1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Matthaus K, Danicke S, Vahjen W, Simon O, Wang J, Valenta H, Meyer K, Strumpf A, Ziesenib H, Flachowsky G (2004) Progression of mycotoxin and nutrient concentrations in wheat after inoculation with Fusarium culmorum. Arch Anim Nutr 58:19–35

    Article  PubMed  CAS  Google Scholar 

  • Monbaliu S, Van Poucke C, Van Peteghem C, Van Poucke K, Heungens K, De Saeger S (2009) Development of a multi-mycotoxin liquid chromatography/tandem mass spectrometry method for sweet pepper analysis. Rapid Commun Mass Spectrom 23:3–11

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Ohmichi K, Sakamoto S, Sago Y, Kushiro M, Nagashima H, Yoshida M, Nakajima T (2011) Detection of a new Fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbitrap (TM) MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:1447–1456

    PubMed  CAS  Google Scholar 

  • Rasmussen RR, Storm I, Rasmussen PH, Smedsgaard J, Nielsen KF (2010) Multi-mycotoxin analysis of maize silage by LC-MS/MS. Anal Bioanal Chem 397:765–776

    Article  PubMed  CAS  Google Scholar 

  • Richard JL (2007) Some major mycotoxins and their mycotoxicoses - An overview. Int J Food Microbiol 119:3–10

    Article  PubMed  CAS  Google Scholar 

  • Rohweder D, Valenta H, Sondermann S, Schollenberger M, Drochner W, Pahlow G, Doll S, Danicke S (2011) Effect of different storage conditions on the mycotoxin contamination of Fusarium culmorum-infected and non-infected wheat straw. Mycotoxin Res 27:145–153

    Article  CAS  Google Scholar 

  • Schenzel J, Goss K-U, Schwarzenbach RP, Bucheli TD, Droge STJ (2012) Experimentally determined (soil) organic matter-water partitioning coefficients for different classes of natural toxins and comparison with estimated numbers. Environ Sci Technol, in press

  • Schenzel J, Schwarzenbach RP, Bucheli TD (2010) A multi residue screening method to quantify mycotoxins in aqueous environmental samples. J Agric Food Chem 58:11207–11217

    Article  CAS  Google Scholar 

  • Scudamore KA, Livesey CT (1998) Occurrence and significance of mycotoxins in forage crops and silage: a review. J Sci Food Agric 77:1–17

    Article  CAS  Google Scholar 

  • Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2659

    Article  PubMed  CAS  Google Scholar 

  • Trucksess MW (2001) Mycotoxins. J AOAC Int 84:202–211

    PubMed  CAS  Google Scholar 

  • Urraca JL, Marazuela MD, Moreno-Bondi MC (2004) Analysis for zearalenone and alpha-zearalenol in cereals and swine feed using accelerated solvent extraction and liquid chromatography with fluorescence detection. Anal Chim Acta 524:175–183

    Article  CAS  Google Scholar 

  • Van Pamel E, Verbeken A, Vlaemynck G, De Boever J, Daeseleire E (2011) Ultrahigh-Performance liquid chromatographic tandem mass spectrometric multimycotoxin method for quantitating 26 mycotoxins in maize silage. J Agric Food Chem 59:9747–9755

    PubMed  Google Scholar 

  • Vendl O, Berthiller F, Crews C, Krska R (2009) Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS. Anal Bioanal Chem 395:1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Vogelgsang S, Hecker A, Musa T, Dorn B, Forrer H-R (2011) On-farm experiments over 5 years in a grain maize/winter wheat rotation: effect of maize residue treatments on Fusarium graminearum infection and deoxynivalenol contamination in wheat. Mycotoxin Res 27:81–96

    Article  CAS  Google Scholar 

  • Zollner P, Mayer-Helm B (2006) Trace mycotoxin analysis in complex biological and food matrices by liquid chromatography-atmospheric pressure ionisation mass spectrometry. J Chromatogr A 1136:123–169

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Andreas Hecker for his help in setting up the field site, inoculating the plants and for sharing his insights on Fusarium diseases. Additionally, we acknowledge the work of the field staff at Agroscope ART and their great support at the field site. We thank the Swiss Federal Office for the Environment for the financial support of this project.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Bucheli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenzel, J., Forrer, HR., Vogelgsang, S. et al. Development, validation and application of a multi-mycotoxin method for the analysis of whole wheat plants. Mycotoxin Res 28, 135–147 (2012). https://doi.org/10.1007/s12550-012-0125-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-012-0125-z

Keywords

Navigation