Skip to main content
Log in

Taphonomy of neopterygian fishes from the Upper Kimmeridgian Wattendorf Plattenkalk of Southern Germany

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The Upper Kimmeridgian Wattendorf Plattenkalk, the oldest of the Solnhofen-type plattenkalks of southern Germany, has yielded a high number of exceptionally preserved fossils over the past several years. The high number of fossils and the fact that every bedding plane, along which the laminated rocks split, has been equally thoroughly searched for fossils, allow for qualitative as well as quantitative taphonomic investigations. For a quantitative analysis of the Wattendorf lagerstätte, four different taphofacies (A–D) were established by means of euclidean cluster analysis. For this, biostratinomic features of neopterygian fishes, primarily of the genus Tharsis, were recorded. Percentages of the occurrence of these features per layer were determined and clustered into groups of similar patterns. The taphonomic features utilised were bending of the spinal column, completeness, and skeletal articulation. Taphofacies A through D mark a change from a palaeoenvironment with only small extrinsic disturbing factors to a palaeoenvironment characterised by greater disturbance (e.g. bottom currents, fluctuating salinity). At the beginning of plattenkalk deposition, cyclic changes of the palaeoenvironment prevailed with periodic high disturbance, probably caused by storm-induced flows. These events initiated mixing of the supposedly chemically stratified water body. In the upper part of the plattenkalk unit, taphofacies indicative of higher disturbance dominate, suggesting a change from stable to less stable environmental conditions in the plattenkalk basin resulting in disruption of the typical plattenkalk sedimentation. Sporadic oxygenation of bottom waters is also indicated by the style of soft-tissue preservation. Besides typical phosphatisation, a specimen of Palaeohirudo? sp. shows soft-tissue preservation through iron-oxide permineralisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allison PA (1988) Phosphatized soft-bodied squids from the Jurassic Oxford Clay. Lethaia 21:403–410

    Article  Google Scholar 

  • Arratia G (1997) Basal teleosts and teleostean phylogeny. Palaeo-Ichthyologica 7:5–168

    Google Scholar 

  • Arratia G (2000) Remarkable teleostean fishes from the Late Jurassic of southern Germany and their phylogenetic relationships. Mitt Mus Nat kunde in Berl, Geowiss Reihe 3:137–179

    Google Scholar 

  • Barthel KW, Swinburne NHM, Conway Morris S (1990) Solnhofen: a study in Mesozoic palaeontology. Cambridge University Press, Cambridge

    Google Scholar 

  • Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Planet Sci Lett 31:275–301

    Article  Google Scholar 

  • Briggs DEG, Kear AJ (1993) Fossilization of soft-tissue in the laboratory. Science 259:1439–1442

    Article  Google Scholar 

  • Butler I, Grimes S, Rickard D (2000) Pyrite formation in an anoxic chemostatic reaction system. J Conf Abstr 5(2):274–275

    Google Scholar 

  • Canfield DE, Raiswell R (1991) Pyrite formation and fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record, 1st edn. Plenum Press, New York, pp 338–387

    Google Scholar 

  • Dunham RJ (1962): Classification of carbonate rocks according to depositional texture. Mem - Am Assoc Pet Geol 108-121

  • Elder RL (1985) Principles of aquatic Taphonomy with examples from the fossil record. Dissertation, University of Michigan

  • Elder RL, Smith GR (1984) Fish taphonomy and paleoecology. Geobios Mém spec 8:287–291

    Article  Google Scholar 

  • Elder RL, Smith GR (1988) Fish taphonomy and environmental inference in paleolimnology. Palaeogeogr Palaeoclimatol Palaeoecol 62:577–592

    Article  Google Scholar 

  • Embry AF, Klovan JE (1971) A Late Devonian reef tract on Northeastern Banks Island, NWT. Can Pet Geol Bull 19:730–781

    Google Scholar 

  • Faux CM, Padian K (2007) The opisthotonic posture of vertebrate skeletons: post-mortem contraction or death throes? Paleobiology 33(2):201–226

    Article  Google Scholar 

  • Fielding S, Martill DM, Naish D (2005) Solnhofen-style soft-tissue preservation in a new species of turtle from the Crato Formation (Early Cretaceous, Aptian) of north-east Brazil. Palaeontology 48:1301–1310

    Article  Google Scholar 

  • Frakes LA, Francis JE, Syktus J (1992) Climate models of the Phanerozoic. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frickinger KA (1994) The fossils of Solnhofen. Goldschneck Verlag, Korb

    Google Scholar 

  • Frickinger KA (1999) The fossils of Solnhofen 2. Goldschneck Verlag, Korb

    Google Scholar 

  • Fürsich FT, Werner W, Schneider S, Mäuser M (2007a) Sedimentology, taphonomy and palaeoecology of a laminated plattenkalk from the Kimmeridgian of the northern Franconian Alb (southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 243:92–117

    Article  Google Scholar 

  • Fürsich FT, Mäuser M, Schneider S, Werner W (2007b) The Wattendorf Plattenkalk (Upper Kimmeridgian) – a new conservation lagerstätte from the northern Franconian Alb, southern Germany. Neues Jahrb Geol Pal Abh 245:45–58

    Article  Google Scholar 

  • Gardiner BG (1960) A revision of certain actinopterygian and coelacanth fishes, chiefly from the Lower Lias. Bulletin of the British Museum (Natural History). Geology 4(7):241–384

    Google Scholar 

  • Genten F, Terwinghe E, Danguy A (2009) Atlas of fish histology. Science Publishers, Enfield

    Book  Google Scholar 

  • Granéli E, Carlsson P, Olsson P, Sundström B, Granéli W, Lindahl O (1989) From anoxia to fish poisoning: the last ten years of phytoplankton blooms in Swedish marine waters. Coastal Estuarine Stud 35:407–427

    Google Scholar 

  • Hammer O, Harper D (2006) Paleontological data analysis. Blackwell Publishing, Malden, p 67

    Google Scholar 

  • Hegenberger W, Schirmer W (1967) Erläuterungen zur Geologischen Karte von Bayern 1: 25000. Blatt Nr. 5932 Ützing, Bayerisches Geologisches Landesamt, München

  • Koch R, Weiss C (2005) Basin-platform transitions in Upper Jurassic limestones and dolomites of the northern Franconian Alb (Germany). Zitteliana 26:43–56

    Google Scholar 

  • Kozur H (1970) Fossile Hirudinea aus dem Oberjura von Bayern. Lethaia 3:225–232

    Article  Google Scholar 

  • Leng Q, Yang H (2003) Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: Implications for microenvironment during early fossilization. Prog Nat Sci 13:206–212

    Google Scholar 

  • Lucas J, Prévôt LE (1991) Phosphates and fossil preservation. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record, 1st edn. Plenum Press, New York, pp 389–409

    Google Scholar 

  • Lyman RL (1994) Vertebrate taphonomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Martill DM (1993) Fossils of the Santana and Crato formations, Brazil. The Palaeontological Association, London

    Google Scholar 

  • Martill DM, Wilby PR, Williams N (1992) Element mapping: a technique for investigating delicate phosphatised fossil soft tissues. Palaeontology 35:869–874

    Google Scholar 

  • Mäuser M (2008) Frankenland am Jurastrand: Versteinerte Schätze aus der Wattendorfer Lagune. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Mayr FX (1967) Paläobiologie und Stratinomie der Plattenkalke der Altmühlalb. Erlanger Geol Abh 67:1–40

    Google Scholar 

  • Moodie RL (1918) Studies in paleopathology III: Opisthotonus and allied phenomena among fossil vertebrates. Am Nat 52:384–394

    Article  Google Scholar 

  • Moodie RL (1923) Paleopathology: an introduction to the study of ancient evidences of disease. University of Illinois Press, Urbana

    Google Scholar 

  • Nixon SW (1989) An extraordinary red tide and fish kill in Narragansett Bay. Coast Estuar Stud 35:429–447

    Google Scholar 

  • Orr PJ, Kearns SL, Briggs DEG (2009) Elemental mapping of exceptionally preserved ‘carbonaceous compression’ fossils. Palaeogeogr Palaeoclimatol Palaeoecol 277:1–8

    Article  Google Scholar 

  • Poyato-Ariza FJ (1993) "Leptolepid"-like fish from the Lower Cretaceous of Spain; a preliminary approach. J Vertebr Paleontol 13:53

    Google Scholar 

  • Rickard D (1999) A pyrite grand unified theory. Proceedings of 9th annual V. M. Goldschmidt conference. LPI Contribution Series 971:246

  • Schäfer W (1972) Ecology and palaeoecology of marine environments. University of Chicago Press, Chicago

    Google Scholar 

  • Schirmer W (2000) Exkursion 6 - Jura am Obermain. Terra Nostra 00/4:98–119

    Google Scholar 

  • Schmid DU, Leinfelder RR, Schweigert G (2005) Stratigraphy and palaeoenvironments of the Upper Jurassic of Southern Germany – a review. Zitteliana B26:31–41

    Google Scholar 

  • Schweigert G (2005) Ammonite biostratigraphy as a tool for dating Upper Jurassic lithographic limestones from South Germany - First results and open questions. Zitteliana 26:22

    Google Scholar 

  • Seilacher A, Reif WE, Westphal F (1985) Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philos Trans R Soc Lond B 311:5–23

    Article  Google Scholar 

  • Viohl G (1994) Fish taphonomy of the Solnhofen Plattenkalk – an approach to the reconstruction of the palaeoenvironment. Geobios 16:81–90

    Article  Google Scholar 

  • von Gümbel CW (1891) Geognostische Beschreibung der Fränkischen Alb (Frankenjura) mit dem anstossenden Fränkischen Keupergebiete. Theodor Fischer, Kassel

    Google Scholar 

  • Weigelt J (1927) Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung, Third edition 1999. M. Weg, Leipzig

    Google Scholar 

  • Weiler W (1929) Über das Vorkommen isolierter Köpfe bei fossilen Clupeiden. Senckenbergiana 11:40–47

    Google Scholar 

  • Whitmore JH (2003) Experimental fish Taphonomy with a comparison to fossil fishes. Dissertation, Loma Linda University

  • Wilby PR, Briggs DEG, Bernier P, Gaillard C (1996) Role of microbial mats in the fossilization of soft tissues. Geology 24:787–790

    Article  Google Scholar 

  • Wilby, PR, Briggs DEG, Viohl, G (1995) Controls on the phosphatization of soft tissues in plattenkalks. 2nd International Symposium on Lithographic Limestones, Ext Abstr: 165-166

  • Woodward AS (1919) The fossil fishes of the English Wealden and Purbeck Formations, Part III. Palaeontogr Soc, Lond Monogr 1917:105–148

    Google Scholar 

  • Yesares-García J, Aguirre J (2004) Quantitative taphonomic analysis and taphofacies in lower Pliocene temperate carbonate-siliciclastic mixed platform deposits (Almería-Níjar basin, SE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 207:83–103

    Article  Google Scholar 

  • Zeiss A (1962) Zur Stratigraphie des Untertithon der südl. Frankenalb. Prétage, Colloque du Jurassique Luxemburg 1962 pp 619–627

  • Zeiss A (1966) Biostratigraphische Auswertung von Ammonitenaufsammlungen im Profil des Malm Alpha und Beta am Feuerstein bei Ebermannstadt/ Ofr. Erlanger Geol Abh 62:104–111

    Google Scholar 

  • Zeiss A (1977) Jurassic stratigraphy of Franconia. Stuttg Beitr Natkd B 31:1–32

    Google Scholar 

  • Ziegler PA (1990) Geological atlas of Western and Central Europe. 2nd ed. Shell Intern. Petrol. Maatschappij B.V.

Download references

Acknowledgements

The authors would like to thank T. Bechmann, preparator of the Natural History Museum Bamberg, for sharing his insights into the Wattendorf quarry, the regional geology of northern Bavaria and for his outstanding work on the preparation of the Wattendorf fossils. Furthermore, we would like to thank all the voluntary helpers, who extracted the fossils from the quarry during the excavations. We also want to thank T. Bechmann and A. Weller for their logistic help at the collections of the Natural History Museum, Bamberg. C. Schulbert, FG PaläoUmwelt, GeoZentrum Nordbayern, is thanked for the preparation of the SEM samples and support in the usage of the SEM and EDX device. H. Schorr, owner of the Wattendorf quarry, kindly gave permission for, and logistically supported, the excavations. For fruitful discussions we thank M. Heinze, L. Scharfenberg, and B. Seuß. M. Hethke gave insights into cluster analysis. Last but not least, we acknowledge the constructive reviews of A. Reisdorf, M. Wilson and M. Wuttke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Chellouche.

Additional information

This article is a contribution to the special issue “Taphonomic processes in terrestrial and marine environments”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chellouche, P., Fürsich, F.T. & Mäuser, M. Taphonomy of neopterygian fishes from the Upper Kimmeridgian Wattendorf Plattenkalk of Southern Germany. Palaeobio Palaeoenv 92, 99–117 (2012). https://doi.org/10.1007/s12549-012-0069-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-012-0069-5

Keywords

Navigation