Skip to main content
Log in

Phase shifting interferometry for large-sized surface measurements by sweeping the repetition rate of femtosecond light pulses

International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

We report the use of a femtosecond pulse laser as an interferometric low-coherent light source for precision surface-profile metrology. Unequal-path non-symmetric low-coherence interferometer is configured to measure large-sized optics with a small reference mirror; such measurement is feasible only with ultra-short mode-locked pulses with periodic temporal low-coherence and high spatial coherence. The temporal delay between pulses from the reference and the target optics is precisely scanned for phase shifting interferometry by tuning the repetition rate of femtosecond pulses referenced to the Rb atomic clock of a time standard. This method enables us to perform high-precision surface measurements without parasitic fringes being produced by stray reflection and removes all mechanical scanning parts from the interferometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Wyant, J. C., “Interferometric optical metrology: basic system and principles,” Laser Focus, pp. 65–71, 1981.

  2. North-Morris, M. B., Van Delden, J., and Wyant, J. C., “Phaseshifting birefringent scatterplate interferometer,” Appl. Opt., Vol. 41, pp. 668–677, 2002.

    Article  Google Scholar 

  3. Caber, P. J., “Interferometric profiler for rough surfaces,” Appl. Opt., Vol. 32, pp. 3438–3441, 1993.

    Article  Google Scholar 

  4. Park, J. and Kim, S.-W., “Active autofocus control using source dithering technique based on fibre-optic confocal principle,” Int. J. Precis. Eng. Manuf., Vol. 12, pp. 733–736, 2011.

    Article  Google Scholar 

  5. Kihm, H. and Kim, S.-W., “Fiber-diffraction interferometer for vibration desensitization,” Opt. Lett., Vol. 30, pp. 2059–2061, 2005.

    Article  Google Scholar 

  6. de Groot, P. and Deck, L., “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt., Vol. 33, pp. 7334–7338, 1994.

    Article  Google Scholar 

  7. Kim, S.-W. and Kim, G.-H., “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt., Vol. 38, pp. 5968–5973, 1999.

    Article  Google Scholar 

  8. Ghim, Y.-S. and Kim, S.-W., “Fast, precise, tomographic measurements of thin films,” Appl. Phys. Lett., Vol. 91, Paper No. 091903, 2007.

  9. Schwider, J., “White-light Fizeau interferometer,” Appl. Opt., Vol. 36, pp. 1433–1437, 1997.

    Article  Google Scholar 

  10. Ai, C., “Multimode laser fizeau interferometer for measuring the surface of a thin transparent plat,” Appl. Opt., Vol. 36, pp. 8135–8138, 1997.

    Article  MathSciNet  Google Scholar 

  11. Harasaki, A., Schmit, J., and Wyant, J. C., “Improved verticalscanning interferometry,” Appl. Opt., Vol. 39, pp. 2107–2115, 2000.

    Article  Google Scholar 

  12. Kim, S.-W., “Combs rule,” Nat. Photonics, Vol. 3, pp. 313–314, 2009.

    Article  Google Scholar 

  13. Newbury, N. R., “Searching for applications with a fine-tooth comb,” Nat. Photonics, Vol. 5, pp. 186–188, 2011.

    Article  Google Scholar 

  14. Ye, J., “Absolute measurement of long, arbitrary distance to less than an optical fringe,” Opt. Lett., Vol. 29, pp. 1153–1155, 2004.

    Article  Google Scholar 

  15. Jin, J., Kim, Y.-J., Kim, Y., Kim, S.-W., and Kang, C.-S., “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express, Vol. 14, pp. 5986–5974, 2006.

    Article  Google Scholar 

  16. Jin, J., Kim, Y.-J., Kim, Y., and Kim, S.-W., “Absolute distance measurements using the optical comb of a femtosecond pulse laser,” Int. J. Precis. Eng. Manuf., Vol. 8, pp. 22–26, 2007.

    Google Scholar 

  17. Joo, K.-N. and Kim, S.-W., “Absolute distance measurement by dispersive interferometry using a femotsecond pulse laser,” Opt. Express, Vol. 14, pp. 5954–5960, 2006.

    Article  Google Scholar 

  18. Schuhler, N., Salvade, Y., Leveque, S., Dandliker, R., and Holzwarth, R., “Frequency comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett., Vol. 31, pp. 3101–3103, 2006.

    Article  Google Scholar 

  19. Joo, K.-N., Kim, Y., and Kim, S.-W., “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express, Vol. 16, pp. 19799–19806, 2008.

    Article  Google Scholar 

  20. Cui, M., Schouten, R. N., Bhattacharya, N., and van den Berg, S. A., “Experimental demonstration of distance measurement with a frequency comb laser,” J. Eur. Opt. Soc., Vol. Rapid Publ. 3, pp. 08003, 2008.

    Article  Google Scholar 

  21. Hyun, S., Kim, Y.-J., Kim, Y., Jin, J., and Kim, S.-W., “Absolute length measurement with the frequency comb of a femtosecond laser,” Meas. Sci. Technol. Vol. 20, Paper No. 095302, 2009.

  22. Coddington, I., Swann, W. C., Nenadovic, L., and Newbury, N. R., “Rapid and precise absolute distance measurements at long range,” Nat. Photonics, Vol. 3, pp. 351–356, 2009.

    Article  Google Scholar 

  23. Lee, J., Kim, Y. -J., Lee, K., Lee, S., and Kim, S. -W., “Time-offlight measurement using femtosecond light pulses,” Nat. Photonics, Vol. 4, pp. 716–720, 2010.

    Article  Google Scholar 

  24. Lee, J., Lee, K., Lee, S., Kim, S.-W., and Kim, Y.-J., “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol., Vol. 23, Paper No. 065203, 2012.

  25. Van den Berg, S. A., Persijn, S. T., Kok, G. J. P., Zeitouny, M. G., and Bhattacharya, N., “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett., Vol. 108, Paper No. 183901, 2012.

  26. Shetty, D., Ali, A., and Hill, J., “Optical instrumentation for vibration measurement and monitoring,” Int. J. Precis. Eng. Manuf., Vol. 12, pp. 405–411, 2011.

    Article  Google Scholar 

  27. Oh, J. S. and Kim, S.-W., “Femtosecond laser pulses for surfaceprofile metrology,” Opt. Lett., Vol. 30, pp. 2650–2652, 2005.

    Article  Google Scholar 

  28. Wei, D., Takahashi, S., Takamasu, K., and Matsumoto, H., “Analysis of the temporal coherence function of a femtosecond optical frequency comb,” Opt. Express, Vol. 17, pp. 7011–7018, 2009.

    Article  Google Scholar 

  29. Kim, Y.-J., Jin, J., Kim, Y., Hyun, S., and Kim, S.-W., “A widerange optical frequency generator based on the frequency comb of a femtosecond laser,” Opt. Express, Vol. 16, pp. 258–264, 2008.

    Article  Google Scholar 

  30. Kong, I. B. and Kim, S.-W., “General Algorithm of Phase-Shifting Interferometry by Iterative Least Square Fitting,” Opt. Eng., Vol. 34, pp. 183–188, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, WD., Park, J., Kim, S. et al. Phase shifting interferometry for large-sized surface measurements by sweeping the repetition rate of femtosecond light pulses. Int. J. Precis. Eng. Manuf. 14, 241–246 (2013). https://doi.org/10.1007/s12541-013-0033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0033-y

Keywords

Navigation