Skip to main content
Log in

Wide-Gap Repair of Mar-M247 Superalloy via Powder Metallurgy Route

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Wide-gap defects repair of Mar-M247 superalloy was investigated by utilizing powder metallurgy. New interlayer alloy with relatively high content of B and Zr was designed based on the isothermal solidification principle. The interlayer alloy is characterized by relative low melting temperature (1100 °C), and the contact angle of interlayer on the Mar-M247 substrate is ~ 70º. Based on the thermodynamic calculation results, the mixture powders with 80 wt% substrate powder and 20 wt% interlayer alloy powder was used as a filler to repair the wide gap with width of 2 mm. After repaired at 1230 °C for 2 h, near-fully dense gap was obtained. MC-type carbides, MB2-type boride, M3B2-type boride and Ni5(Zr,Hf)-type intermetallic were observed in the liquid zone. After post-weld heat treatment, the block borides, chain carbides and eutectic are successfully removed, and the tensile strength of the bonding zone is close to that of the Mar-M247 superalloy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data and code Availability

The datasets used and/or analyzed during the current study are available from the corresponding author (Ye Liu) on reasonable request.

References

  1. H.S. Whitesell, R.A. Overfelt, Mater. Sci. Eng. A 318, 264 (2001). https://doi.org/10.1016/S0921-5093(01)01264-3

    Article  Google Scholar 

  2. H.Y. Bor, C.G. Chao, C.Y. Ma, Scripta Mater. 38, 329 (1997). https://doi.org/10.1016/S1359-6462(97)00444-2

    Article  Google Scholar 

  3. M.V. Nathal, R.D. Maier, L.J. Ebert, Metall. Mater. Trans. A 13, 1775 (1982). https://doi.org/10.1007/BF02647833

    Article  Google Scholar 

  4. J. Chen, J.H. Lee, C.Y. Jo, S.J. Choe, Y.T. Lee, Mater. Sci. Eng. A 247, 113 (1998). https://doi.org/10.1016/S0921-5093(97)00761-2

    Article  Google Scholar 

  5. S. Milenkovic, I. Sabirov, J. LLorca, Mater. Lett. 73, 216 (2012). https://doi.org/10.1016/j.matlet.2012.01.028

    Article  Google Scholar 

  6. R. Darolia, Int. Mater. Rev. 64, 355 (2019). https://doi.org/10.1080/09506608.2018.1516713

    Article  Google Scholar 

  7. S. Mokadem, C. Bezencon, A. Hauert, A. Jacot, W. Kurz, Metall. Mater. Trans. A 38, 1500 (2007). https://doi.org/10.1007/s11661-007-9172-z

    Article  Google Scholar 

  8. J.H.G. Mattheij, Mater. Sci. Technol. 1, 608 (1985). https://doi.org/10.1179/mst.1985.1.8.608

    Article  Google Scholar 

  9. Z. Wang, H. Qiang, J. Wang, L. Duan, Propell. Explos. Pyrot. 47, e202200046 (2022). https://doi.org/10.1002/prep.202200046

    Article  Google Scholar 

  10. Y. Zeng, L. Li, W. Huang, Z. Zhao, W. Yang, Z. Yue, Int. J. Mech. Sci. 221, 107173 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107173

    Article  Google Scholar 

  11. X. Huang, W. Miglietti, J. Eng. Gas Turbines Power 134, 010801 (2012). https://doi.org/10.1115/1.4003962

    Article  Google Scholar 

  12. E.P. Hinchy, D. Barron, M.J. Pomeroy, D.A. Tanner, J. Alloys Compd. 857, 157560 (2021). https://doi.org/10.1016/j.jallcom.2020.157560

    Article  Google Scholar 

  13. G. Liu, D. Du, K. Wang, Z. Pu, D. Zhang, B. Chang, Mater. Sci. Eng. A 808, 140911 (2021). https://doi.org/10.1016/j.msea.2021.140911

    Article  Google Scholar 

  14. Y. Ye, G. Zou, W. Long, Q. Jia, H. Bai, A. Wu, L. Liu, Sci. Technol. Weld. Joi. 24, 52 (2019). https://doi.org/10.1080/13621718.2018.1477546

    Article  Google Scholar 

  15. T. Kalfhaus, H. Schaar, F. Thaler, B. Ruttert, D. Sebold, J. Frenzel, I. Steinbach, W. Theisen, O. Guillon, T.W. Clyne, R. Vassen, Surf. Coat. Tech. 405, 126494 (2021). https://doi.org/10.1016/j.surfcoat.2020.126494

    Article  Google Scholar 

  16. H. Chen, J.C. Lippold, J. Vollbrecht, R. Grylls, D. Liu, J. Laser Appl. 34, 012008 (2022). https://doi.org/10.2351/7.0000553

    Article  Google Scholar 

  17. Z.P. Zhang, J.D. Liu, K.Q. Qiu, Y.Y. Huang, J.G. Li, X.G. Wang, J.L. Liu, M. Wang, M.K. Zou, Y.Z. Zhou, Met. Mater. Int. 29, 444 (2023). https://doi.org/10.1007/s12540-022-01223-7

    Article  Google Scholar 

  18. H. Assadi, A. Shirzadi, E. Wallach, Acta Mater. 49, 31 (2001). https://doi.org/10.1016/S1359-6454(00)00307-4

    Article  Google Scholar 

  19. M. Pouranvari, A. Ekrami, A.H. Kokabi, Mater. Sci. Eng. A 568, 76 (2013). https://doi.org/10.1016/j.msea.2013.01.029

    Article  Google Scholar 

  20. M. Pouranvari, A. Ekrami, A.H. Kokabi, J. Alloys Compd. 469, 270 (2009). https://doi.org/10.1016/j.jallcom.2008.01.101

    Article  Google Scholar 

  21. J. Cao, Y.F. Wang, X.G. Song, C. Li, J.C. Feng, Mater. Sci. Eng. A 590, 1 (2014). https://doi.org/10.1016/j.msea.2013.10.013

    Article  Google Scholar 

  22. B. Zhang, G. Sheng, Y. Jiao, Z. Gao, X. Gong, H. Fan, J. Zhong, J. Alloys Compd. 695, 3202 (2017). https://doi.org/10.1016/j.jallcom.2016.11.306

    Article  Google Scholar 

  23. M. Pouranvari, A. Ekrami, A.H. Kokabi, Mater. Sci. Eng. A 490, 229 (2008). https://doi.org/10.1016/j.msea.2008.01.032

    Article  Google Scholar 

  24. J.K. Kim, H.J. Park, D.N. Shim, D.J. Kim, J. Manuf. Process. 30, 208 (2017). https://doi.org/10.1016/j.jmapro.2017.09.024

    Article  Google Scholar 

  25. N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, Z.Q. Hu, Metall. Mater. Trans. A 44, 1793 (2013). https://doi.org/10.1007/s11661-012-1540-7

    Article  Google Scholar 

  26. R. Bakhtiari, A. Ekram, T.I. Khan, Mater. Sci. Eng. A 546, 291 (2012). https://doi.org/10.1016/j.msea.2012.03.073

    Article  Google Scholar 

  27. R.K. Saha, T.I. Khan, J. Mater. Sci. 42, 9187 (2007). https://doi.org/10.1007/s10853-007-1922-1

    Article  Google Scholar 

  28. M.S. Kenevisi, S.M. Mousavi, M. Alaei, Mech. Mater. 64, 69 (2013). https://doi.org/10.1016/j.mechmat.2013.04.011

    Article  Google Scholar 

  29. A.T. Olanipekun, N.B. Maledi, P.M. Mashinini, Powder Metall. 63, 254 (2020). https://doi.org/10.1080/00325899.2020.1807712

    Article  Google Scholar 

  30. O.A. Ojo, J. Mater. Sci. 47, 1598 (2012). https://doi.org/10.1007/s10853-011-6176-2

    Article  Google Scholar 

  31. S.Y. Wang, Y. Sun, C.Y. Cui, X.F. Sun, Y.Z. Zhou, Y.M. Ma, H.L. An, J. Mater. Sci. Technol. 80, 244 (2021). https://doi.org/10.1016/j.jmst.2020.05.078

    Article  Google Scholar 

  32. Y. Ye, G. Zou, W. Long, H. Bai, A. Wu, L. Liu, Y. Zhou, J. Alloys Compd. 748, 26 (2018). https://doi.org/10.1016/j.jallcom.2018.02.343

    Article  Google Scholar 

  33. W. Li, T. Jin, X.F. Sun, Y. Guo, H.R. Guan, Z.Q. Hu, Scripta Mater. 48, 1283 (2003). https://doi.org/10.1016/S1359-6462(03)00045-9

    Article  Google Scholar 

  34. G. Wang, Y. Sun, X. Wang, J. Liu, J. Liu, J. Li, X. Sun, J. Yu, Y. Zhou, T. Jin, X. Sun, X. Sun, J. Mater. Sci. Technol. 33, 1219 (2017). https://doi.org/10.1016/j.jmst.2017.01.027

    Article  Google Scholar 

  35. O.J. Adebajo, O.A. Ojo, Metall. Mater. Trans. A 48, 26 (2017). https://doi.org/10.1007/s11661-016-3837-4

    Article  Google Scholar 

  36. Y.-L. Tsai, S.-F. Wang, H.-Y. Bor, Y.-F. Hsu, Mater. Sci. Eng. A 571, 155 (2013). https://doi.org/10.1016/j.msea.2013.02.002

    Article  Google Scholar 

  37. A.K. Jena, M.C. Chturvedi, J. Mater. Sci. 19, 3121 (1984). https://doi.org/10.1007/BF00549796

    Article  Google Scholar 

  38. C.Z. Zhu, R. Zhang, C.Y. Cui, Y.Z. Zhou, Y. Yuan, Z.S. Yu, X.F. Sun, Metall. Mater. Trans. A 52, 108 (2021). https://doi.org/10.1007/s11661-020-06081-9

    Article  Google Scholar 

  39. B. Yin, G. Xie, L.H. Lou, J. Zhang, J. Alloys Compd. 829, 154440 (2020). https://doi.org/10.1016/j.jallcom.2020.154440

    Article  Google Scholar 

  40. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26, 273 (2002). https://doi.org/10.1016/S0364-5916(02)00037-8

  41. T. Henhoeffer, X. Huang, S. Yandt, P. Au, J. Eng. Gas Turbines Power. 133, 092101 (2011). https://doi.org/10.1115/1.4002824

    Article  Google Scholar 

  42. C.Y. Su, W.C. Lih, C.P. Chou, H.C. Tsai, J. Mater. Process. Tech. 115, 326 (2001). https://doi.org/10.1016/S0924-0136(01)00831-7

    Article  Google Scholar 

  43. H. Deng, Y. Chen, Y. Jia, Y. Pang, T. Zhang, S. Wang, L. Yin, J. Manuf. Process. 64, 379 (2021). https://doi.org/10.1016/j.jmapro.2021.01.024

    Article  Google Scholar 

  44. Y. Chen, Y. Mao, W. Lu, P. He, Opt. Laser Technol. 91, 197 (2017). https://doi.org/10.1016/j.optlastec.2016.12.028

    Article  Google Scholar 

  45. G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021). https://doi.org/10.1007/s12540-020-00931-2

    Article  Google Scholar 

  46. Q. Zhu, J. Chen, G. Gou, H. Chen, P. Li, J. Mater. Process. Tech. 246, 267 (2017). https://doi.org/10.1016/j.jmatprotec.2017.03.022

    Article  Google Scholar 

  47. J.-H. Park, G.B. Bang, K.-A. Lee, Y. Son, Y.H. Song, B.-S. Lee, W.R. Kim, H.G. Kim, Met. Mater. Int. 28, 2836 (2022). https://doi.org/10.1007/s12540-022-01169-w

    Article  Google Scholar 

  48. M. Kumaran, V. Senthilkumar, Met. Mater. Int. 29, 467 (2023). https://doi.org/10.1007/s12540-022-01225-5

    Article  Google Scholar 

  49. Y. Lee, E.S. Kim, S. Park, J.M. Park, J.B. Seol, H.S. Kim, T. Lee, H. Sung, J.G. Kim, Met. Mater. Int. 28, 197 (2022). https://doi.org/10.1007/s12540-021-01081-9

    Article  Google Scholar 

  50. A.H. Nassajpour-Esfahani, R. Emadi, A. Alhaji, A. Bahrami, M.R. Haftbaradaran-Esfahani, J. Alloys Compd. 830, 154588 (2020). https://doi.org/10.1016/j.jallcom.2020.154588

    Article  Google Scholar 

  51. A.S. Namini, M.S. Asl, S.A. Delbari, Met. Mater. Int. 27, 1092 (2021). https://doi.org/10.1007/s12540-019-00469-y

    Article  Google Scholar 

  52. M.M. Dewidar, H.-C. Yoon, J.K. Lim, Met. Mater. Int. 12, 193 (2006). https://doi.org/10.1007/BF03027531

    Article  Google Scholar 

  53. R. Baldan, R.L.P. da Rocha, R.B. Tomasiello, C.A. Nunes, A.M. da Silva Costa, M.J.R. Barboza, G.C. Coelho, R. Rosenthal, J. Mater. Eng. Perform. 22, 2574 (2013). https://doi.org/10.1007/s11665-013-0565-4

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the fund of State Key Laboratory of Long-life High Temperature Materials (DTCC28EE200792), National Natural Science Foundation of China (51974029, 52074032, 52101152), Natural Science and Technology Major Project (2017-VI-0014-0086), Fundamental Research Funds for the Central Universities (FRF-BD-20-23 A, FRF-GF-20-27B), 111 project (B170003), Provincial Natural Science Foundation of Hunan (2022JJ40438, 2022JJ30564) and the 2022 opening subject of State Key Laboratory of Powder Metallurgy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianjian Wang, Ye Liu or Lin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Informed Consent

for publication of this paper was obtained from all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiufang Gong and Yankang Yu have contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Yu, Y., Wang, T. et al. Wide-Gap Repair of Mar-M247 Superalloy via Powder Metallurgy Route. Met. Mater. Int. 29, 3286–3297 (2023). https://doi.org/10.1007/s12540-023-01443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01443-5

Keywords

Navigation