Skip to main content
Log in

Investigation of Surface Nanostructuring, Mechanical Performance and Deformation Mechanisms of AISI 316L Stainless Steel Treated by Surface Mechanical Impact Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanostructured materials exhibit superior properties with respect to their bulk counterpart. Recently, a new processing method for surface nanostructuring of metallic materials called surface mechanical impact treatment (SMIT) was developed. In this study, the surface microstructural features due to the refinement process of AISI 316L stainless steel by means of SMIT and subsequent mechanical performance were investigated. The effects of SMIT processing parameters, i.e. ball size and treatment duration, were studied in terms of microstructural evolutions using X-ray diffraction, transmission electron microscopy, optical microscopy, and field emission scanning electron microscopy analyses, and mechanical properties through hardness and tensile tests. A gradient nanostructured surface layer was successfully formed on the surface of the treated samples. The mean grain size was measured to be ~ 20 nm in the topmost surface layer and increased with increasing depth. Microstructural examinations showed that the twins and their intersections (rhombic blocks) formed in the surface layers. It was found that the mechanical performance of the treated samples is effectively enhanced. The surface hardness of the treated samples increased about 3 times while the yield strength of the samples increased with increasing SMIT time and size of the ball up to 2.5 times. The grain refinement mechanisms, mechanical properties, and fracture behavior were subsequently analyzed and discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A:

Zener anisotropy

b:

Burgers vector

C:

Elastic stiffness coefficient

D:

Grain size

d:

Diameter of the ball

G:

Shear modulus

I:

Intensity

K111ω0 :

Proportionality constant

fα ' :

Volume fraction of α′-martensite

R:

Reliability factor

t:

Time

α:

Stacking fault probability

α0 :

Unit cell edge dimension

ץ:

Stacking fault energy

ρ:

Dislocation density

ε:

Lattice microstrain

AISI:

American Iron and Steel Institute

DIM:

Deformation induced martensite

FESEM:

Field emission scanning electron microscopy

FCC:

Face centered cubic

HCP:

Hexagonal closest packed

OM:

Optical microscopy

SAED:

Selected area electron diffraction

SF:

Stacking fault

SFE:

Stacking fault energy

SFP:

Stacking fault probability

SFT:

Stacking fault tetrahedra

SMAT:

Surface mechanical attrition treatment

SMGT:

Surface mechanical grinding treatment

SMIT:

Surface mechanical impact treatment

SMRT:

Surface mechanical rolling treatment

SPD:

Severe plastic deformation

TEM:

Transmission electron microscopy

TRIP:

Transformation induced plasticity

UIP:

Ultrasonic impact peening

UIT:

Ultrasonic impact treatment

XRD:

X-ray diffraction

References

  1. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater. 51, 5743–5774 (2003). https://doi.org/10.1016/j.actamat.2003.08.032

    Article  CAS  Google Scholar 

  2. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427–556 (2006). https://doi.org/10.1016/j.pmatsci.2005.08.003

    Article  CAS  Google Scholar 

  3. N.A. Dan Liu, D. Liu, X. Zhang, C. Liu, Mater. Sci. Eng. A 726, 69–81 (2018). https://doi.org/10.1016/j.msea.2018.04.033

    Article  CAS  Google Scholar 

  4. A.M. Hodge, Y.M. Wang, T.W. Barbee Jr., Mater. Sci. Eng. A 429, 272–276 (2006). https://doi.org/10.1016/j.msea.2006.05.109

    Article  CAS  Google Scholar 

  5. A. Zaffora, F. Di Franco, M. Santamaria, Curr. Opin. Electrochem. 29, 100760 (2021). https://doi.org/10.1016/j.coelec.2021.100760

    Article  CAS  Google Scholar 

  6. L. Ceschini, C. Chiavari, E. Lanzoni, C. Martini, Mater. Design 38, 154–160 (2012). https://doi.org/10.1016/j.matdes.2012.02.019

    Article  CAS  Google Scholar 

  7. S. Bagherifard, S. Slawik, I. Fernández-pariente, C. Pauly, F. Mücklich, M. Guagliano, Mater. Design 102, 68–77 (2016). https://doi.org/10.1016/j.matdes.2016.03.162

    Article  CAS  Google Scholar 

  8. Y.G. Liu, M.Q. Li, H.J. Liu, Mater. Charact. 123, 83–90 (2017). https://doi.org/10.1016/j.matchar.2016.11.020

    Article  CAS  Google Scholar 

  9. C.S. Montross, T. Wei, L. Ye, G. Clark, Y.-W. Mai, Int. J. Fatigue 24, 1021–1036 (2002). https://doi.org/10.1016/S0142-1123(02)00022-1

    Article  CAS  Google Scholar 

  10. S. Kalainathan, S. Sathyajith, S. Swaroop, Opt. Laser. Eng. 50, 1740–1745 (2012). https://doi.org/10.1016/j.optlaseng.2012.07.007

    Article  Google Scholar 

  11. S. Bahl, S. Suwas, T. Ungàr, K. Chatterjee, Acta Mater. 122, 138–151 (2017). https://doi.org/10.1016/j.actamat.2016.09.041

    Article  CAS  Google Scholar 

  12. A. Heydari, R. Miresmaeili, S. Bagherifard, M. Guagliano, M. Aliofkhazraei, Mater. Design 116, 365–373 (2017). https://doi.org/10.1016/j.matdes.2016.12.045

    Article  Google Scholar 

  13. T.O. Olumide, J. Lu, Nano Mater. Sci. 2, 3 (2020). https://doi.org/10.1016/j.nanoms.2020.04.002

    Article  Google Scholar 

  14. W.L. Li, N.R. Tao, K. Lu, Scripta Mater. 59, 546–549 (2008). https://doi.org/10.1016/j.scriptamat.2008.05.003

    Article  CAS  Google Scholar 

  15. Y.Z. Zhang, J.J. Wang, N.R. Tao, J. Mater. Sci. Technol. 36, 65 (2019). https://doi.org/10.1016/j.jmst.2019.02.008

    Article  Google Scholar 

  16. H.W. Huang, Z.B. Wang, J. Lu, K. Lu, Acta Mater. 87, 150–160 (2015). https://doi.org/10.1016/j.actamat.2014.12.057

    Article  CAS  Google Scholar 

  17. Y. Ye, S.-Z. Kure-Chu, Z. Sun, X. Li, H. Wang, G. Tang, Mater. Design 149, 214–227 (2018). https://doi.org/10.1016/j.matdes.2018.04.027

    Article  CAS  Google Scholar 

  18. M. Jamalian, D.P. Field, J. Mater. Sci. Technol. 36, 45–49 (2020). https://doi.org/10.1016/j.jmst.2019.06.013

    Article  CAS  Google Scholar 

  19. M. Dehghan, R. Miresmaeili, M. Askari-Paykani, H.R. Shahverdi, Met. Mater. Int. 28, 1232–1245 (2022). https://doi.org/10.1007/s12540-021-01007-5

    Article  Google Scholar 

  20. T. Roland, D. Retraint, K. Lu, J. Lu, Scripta Mater. 54, 1949–1954 (2006). https://doi.org/10.1016/j.scriptamat.2006.01.049

    Article  CAS  Google Scholar 

  21. F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60, 1059–1071 (2012). https://doi.org/10.1016/j.actamat.2011.11.009

    Article  CAS  Google Scholar 

  22. R. Peng, L. Fu, L. Zhou, Appl. Surf. Sci. 388, 406–411 (2016). https://doi.org/10.1016/j.apsusc.2015.12.103

    Article  CAS  Google Scholar 

  23. Z.D. Wang, G.F. Sun, Y. Lu, M.Z. Chen, K.D. Bi, Z.H. Ni, Surf. Coat. Tech. 385, 125403 (2020). https://doi.org/10.1016/j.surfcoat.2020.125403

    Article  CAS  Google Scholar 

  24. S.M. Hassani-gangaraj, K.S. Cho, H.L. Voigt, M. Guagliano, C.A. Schuh, Acta Mater. 97, 105–115 (2015). https://doi.org/10.1016/j.actamat.2015.06.054

    Article  CAS  Google Scholar 

  25. Y. Liu, M. Li, Mater. Sci. Eng. A 669, 7–13 (2016). https://doi.org/10.1016/j.msea.2016.05.088

    Article  CAS  Google Scholar 

  26. R. Madhavan, S. Suwas, Acta Mater. 121, 46–58 (2016). https://doi.org/10.1016/j.actamat.2016.08.036

    Article  CAS  Google Scholar 

  27. W.H.S. Lou, Y. Li, L. Zhou, X. Nie, G. He, Y. Li, L. Yuqin, H. Weifeng, Mater. Design 104, 320–326 (2016). https://doi.org/10.1016/j.matdes.2016.05.028

    Article  CAS  Google Scholar 

  28. S.M. Dasharath, S. Mula, Mater. Design 99, 552-564 (2016). https://doi.org/10.1016/j.matdes.2016.03.095

    Article  Google Scholar 

  29. W.S. Zhao, N.R. Tao, J.Y. Guo, Q.H. Lu, K. Lu, Scripta Mater. 53, 745–749 (2005). https://doi.org/10.1016/j.scriptamat.2005.05.022

    Article  CAS  Google Scholar 

  30. S. Scheriau, Z. Zhang, S. Kleber, R. Pippan, Mater. Sci. Eng. A 528, 2776–2786 (2011). https://doi.org/10.1016/j.msea.2010.12.023

    Article  CAS  Google Scholar 

  31. M. Jayalakshmi, P. Huilgol, B. Ramachandra, K.U. Bhat, Surf. Coat. Tech. 344, 295–302 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.028

    Article  CAS  Google Scholar 

  32. B. Schuh, R. Pippan, A. Hohenwarter, Mater. Sci. Eng. A 748, 379–385 (2019). https://doi.org/10.1016/j.msea.2019.01.073

    Article  CAS  Google Scholar 

  33. H.Q. Sun, Y.-N. Shi, M.-X. Zhang, K. Lu, Acta Mater. 55, 975–982 (2007). https://doi.org/10.1016/j.actamat.2006.09.018

    Article  CAS  Google Scholar 

  34. A.K. Agrawal, A. Singh, A. Vivek, S. Hansen, G. Daehn, Mater. Lett. 22, 50-53 (2018). https://doi.org/10.1016/j.matlet.2018.04.044

    Article  Google Scholar 

  35. R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, L.P. Karjalainen, Acta Mater. 84, 339–348 (2015). https://doi.org/10.1016/j.actamat.2014.10.038

    Article  CAS  Google Scholar 

  36. S.J. Wang, T. Jozaghi, I. Karaman, R. Arroyave, Y.I. Chumlyakov, Mater. Sci. Eng. A 694, 121-131 (2017). https://doi.org/10.1016/j.msea.2017.03.073

    Article  Google Scholar 

  37. Z. Fan, H. Xu, D. Li, L. Zhang, L. Liao, Procedia Eng. 27, 1718–1722 (2012). https://doi.org/10.1016/j.proeng.2011.12.641

    Article  CAS  Google Scholar 

  38. E. Maleki, N. Maleki, A. Fattahi, O. Unal, M. Guagliano, S. Bagherifard, Surf. Coat. Tech. 405, 126729 (2021). https://doi.org/10.1016/j.surfcoat.2020.126729

    Article  Google Scholar 

  39. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  40. R.E. Schramm, R.P. Reed,  Metall. Trans. A 6, 1345–1351 (1975)

    Article  Google Scholar 

  41. J.-E. Jin, Y.-K. Lee, Acta Mater. 60, 1680–1688 (2012). https://doi.org/10.1016/j.actamat.2011.12.004

    Article  CAS  Google Scholar 

  42. J. Talonen, H. Hänninen, Acta Mater. 55, 6108–6118 (2007). https://doi.org/10.1016/j.actamat.2007.07.015

    Article  CAS  Google Scholar 

  43. K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, J.K. Chakravartty, B.K. Dutta, R.K. Sinha, Procedia Engineer. 86, 899–909 (2014). https://doi.org/10.1016/j.proeng.2014.11.112

    Article  Google Scholar 

  44. J.W. Wang, S. Narayanan, J. Yu Huang, Z. Zhang, T. Zhu, S.X. Mao, Nat. Commun. 4, 2340 (2013). https://doi.org/10.1038/ncomms3340

    Article  CAS  Google Scholar 

  45. M.H. Loretto, P.J. Phillips, M.J. Mills, Scripta Mater. 94, 1–4 (2015). https://doi.org/10.1016/j.scriptamat.2014.07.020

    Article  CAS  Google Scholar 

  46. B.N Singh, N.M Ghoniem, H Trinkaus, J. Nucl. Mater. 307–311, 159–170 (2002). https://doi.org/10.1016/S0022-3115(02)01095-4

    Article  Google Scholar 

  47. R. Schäublin, Z. Yao, N. Baluc, M. Victoria, Philos. Mag. 85, 769-777 (2005). https://doi.org/10.1080/14786430412331319929

    Article  Google Scholar 

  48. J. Silcox, P.B. Hirsch, Philos. Mag. A 4, 72-89 (1959). https://doi.org/10.1080/14786435908238228

    Article  Google Scholar 

  49. H. Wang, D.S. Xu, R. Yang, P. Veyssie, Acta Mater. 59, 19–29 (2011). https://doi.org/10.1016/j.actamat.2010.07.045

    Article  CAS  Google Scholar 

  50. M.H. Loretto, A. Pavey, Philos. Mag. A 17, 553-559 (1968). https://doi.org/10.1080/14786436808217742

    Article  Google Scholar 

  51. Q. Wang, Q. Bai, J. Chen, Y. Guo, W. Xie, Appl. Surf. Sci. 355, 1153–1160 (2015). https://doi.org/10.1016/j.apsusc.2015.06.176

    Article  CAS  Google Scholar 

  52. M. Moallemi, A. Kermanpur, A. Naja, A. Rezaee, H.S. Baghbadorani, P.D. Nezhadfar, Mater. Sci. Eng. A 653, 147–152 (2016). https://doi.org/10.1016/j.msea.2015.12.006

    Article  CAS  Google Scholar 

  53. S. Vercammen, B. Blanpain, Acta Mater. 52, 2005–2012 (2012). https://doi.org/10.1016/j.actamat.2003.12.040

    Article  CAS  Google Scholar 

  54. D. Canadinc, H. Sehitoglu, H.J. Maier, Y.I. Chumlyakov, Acta Mater. 53, 1831–1842 (2005). https://doi.org/10.1016/j.actamat.2004.12.033

    Article  CAS  Google Scholar 

  55. H.J. Bae, K.K. Ko, M. Ishtiaq, J.G. Kim, H. Sung, J.B. Seol, J. Mater. Sci. Technol. 115, 177–188 (2022). https://doi.org/10.1016/j.jmst.2021.11.027

    Article  Google Scholar 

  56. M.A. Vasylyev, B.N. Mordyuk, S.I. Sidorenko, S.M. Voloshko, A.P. Burmak, Surf. Coat. Tech. 343, 57–68 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.019

    Article  CAS  Google Scholar 

  57. V. Azar, B. Hashemi, M.R. Yazdi, Surf. Coat. Tech. 204, 3546–3551 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.015

    Article  CAS  Google Scholar 

  58. P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Béranger, C. Lemaitre, Mater. Sci. Eng. A 280, 294–302 (2000). https://doi.org/10.1016/S0921-5093(99)00698-X

    Article  Google Scholar 

  59. X.H. Chen, J. Lu, L. Lu, K. Lu, Scripta Mater. 52, 1039–1044 (2005). https://doi.org/10.1016/j.scriptamat.2005.01.023

    Article  CAS  Google Scholar 

  60. K. Lu, J. Lu, Mater. Sci. Eng. A 357-377, 38–45 (2004). https://doi.org/10.1016/j.msea.2003.10.261

    Article  CAS  Google Scholar 

  61. P. Zhang, J. Lindemann, Scripta Mater. 52, 485–490 (2005). https://doi.org/10.1016/j.scriptamat.2004.11.003

    Article  CAS  Google Scholar 

  62. S. Bagherifard, I.F. Pariente, R. Ghelichi, M. Guagliano, Procedia Eng. 2, 1683–1690 (2010). https://doi.org/10.1016/j.proeng.2010.03.181

    Article  Google Scholar 

  63. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, L. Zuo, Mater. Sci. Eng. A 552, 514–522 (2012). https://doi.org/10.1016/j.msea.2012.05.080

    Article  CAS  Google Scholar 

  64. K. Datta, R. Delhez, P.M. Bronsveld, J. Beyer, H.J.M. Geijselaers, J. Post, Acta Mater. 57, 3321–3326 (2009). https://doi.org/10.1016/j.actamat.2009.03.039

    Article  CAS  Google Scholar 

  65. J.A. Venables, Philos. Mag. A 7, 35–44 (1962). https://doi.org/10.1080/14786436208201856

    Article  Google Scholar 

  66. Z. Guo, Y. Rong, S. Chen, T.Y. Hsu, Scripta Mater. 41, 153–158 (1999). https://doi.org/10.1016/S1359-6462(99)00134-7

    Article  CAS  Google Scholar 

  67. T.Y. Hsu, X. Zuyao, Mater. Sci. Eng. A 273-275, 494–497 (1999). https://doi.org/10.1016/S0921-5093(99)00386-X

    Article  Google Scholar 

  68. A. Etienne, B. Radiguet, C. Genevois, J.-M. Le Breton, R. Valiev, P. Pareige, Mater. Sci. Eng. A 527, 5805–5810 (2010). https://doi.org/10.1016/j.msea.2010.05.049

    Article  CAS  Google Scholar 

  69. C. Ye, S. Suslov, D. Lin, G.J. Cheng, Philos. Mag. 92, 1369-1389 (2012). doi:https://doi.org/10.1080/14786435.2011.645899.

  70. K.P. Staudhammer, L.E. Murr, S.S. Hecker, Acta Mater. 31, 267–274 (1983). https://doi.org/10.1016/0001-6160(83)90103-7

    Article  CAS  Google Scholar 

  71. B.N. Mordyuk, Y.V. Milman, M.O. Ie, G.I. Prokopenko, V.V. Silberschmidt, M.I. Danylenko, A.V. Kotko, Surf. Coat. Tech. 202, 4875–4883 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.080

    Article  CAS  Google Scholar 

  72. B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, M.O. Iefimov, Mater. Sci. Eng. A 458, 253–261 (2007). https://doi.org/10.1016/j.msea.2006.12.049

    Article  CAS  Google Scholar 

  73. Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, D. Raabe, Acta Mater. 97, 305–315 (2015). https://doi.org/10.1016/j.actamat.2015.06.053

    Article  CAS  Google Scholar 

  74. Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, S.J. Zinkle, Philos. Mag. 88, 581-597 (2008). https://doi.org/10.1080/14786430801898644

    Article  Google Scholar 

  75. Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, S.J. Zinkle, J. Nucl. Mater. 351, 285–294 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.003

    Article  CAS  Google Scholar 

  76. J.S. Robach, I.M. Robertson, H.-J. Lee, B.D. Wirth, Acta Mater. 54, 1679–1690 (2006). https://doi.org/10.1016/j.actamat.2005.11.038

    Article  CAS  Google Scholar 

  77. Y. Matsukawa, S.J. Zinkle, J. Nucl. Mater. 329-333, 919–923 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.069

    Article  CAS  Google Scholar 

  78. M. Briceño, J. Kacher, I.M. Robertson, J. Nucl. Mater. 433, 390–396 (2013). https://doi.org/10.1016/j.jnucmat.2012.10.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their deepest gratitude to Dr. Farhad Farzan for assisting in the design and manufacturing of the SMIT setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Miresmaeili.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, M., Miresmaeili, R. & Heydari Astaraee, A. Investigation of Surface Nanostructuring, Mechanical Performance and Deformation Mechanisms of AISI 316L Stainless Steel Treated by Surface Mechanical Impact Treatment. Met. Mater. Int. 29, 948–967 (2023). https://doi.org/10.1007/s12540-022-01286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01286-6

Keywords

Navigation