Skip to main content
Log in

Hydrogen Trapping Characteristics and Mechanical Degradation in a Duplex Stainless Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We investigated the hydrogen behaviors and corresponding mechanical degradation in the duplex stainless steel under the ex-situ and in-situ cathodic charging condition. In the ex-situ condition, where the hydrogen charging was conducted prior to the slow strain tensile test, the hydrogen uptake linearly increased with the charging time. The absorbed hydrogen was thought to be trapped at dislocation and grain boundary in ferrite at early stage of cathodic charging, but the ferrite-austenite interface gradually involved in the hydrogen trapping at the prolonged charging time, leading to the increase of trap activation energy as the charging time elapsed. When the cathodic charging was conducted during the slow strain tensile test, i.e. in-situ condition, the hydrogen uptake was remarkably accelerated and the hydrogen penetrated more deeply into the steel interior. It is believed to be attributed to the transport of hydrogen atoms from the surface by gliding dislocations. The elongation loss in the duplex stainless steel became less sensitive to the hydrogen content as the charging time increased and more than 60% of ductility was preserved even with diffusible hydrogen content around 50 ppm, which represented a remarkable resistance to the hydrogen embrittlement compared to those in the conventional high strength steels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016)

    Article  CAS  Google Scholar 

  2. K.-M. Ryu, D.G. Lee, J. Moon, C.-H. Lee, T.-H. Lee, J.S. Lee, D.-W. Suh, Met. Mater. Int. 27, 425 (2021)

    Article  CAS  Google Scholar 

  3. C. Park, N. Kang, S. Liu, J. Lee, E. Chun, S.-J. Yoo, Met. Mater. Int. 25, 584 (2019)

    Article  CAS  Google Scholar 

  4. D.-S. Bae, U.-B. Baek, S.-H. Nahm, I. Jo, Metals Mater. Int. 28, 466 (2022)

  5. M. Asadipoor, J. Kadkhodapour, A. Pourkamali Anaraki, S. Sharifi, A.C. Darabi, A. Barnoush, Met. Mater. Int. 27, 2276 (2021)

    Article  CAS  Google Scholar 

  6. L. Jemblie, V. Olden, O.M. Akselsen, Phil. Trans. R. Soc. A 375, 20160411 (2017)

    Article  Google Scholar 

  7. J. Song, W. Curtin, Nat. Mater. 12, 145 (2013)

    Article  CAS  Google Scholar 

  8. Y. Hu, C. Dong, H. Luo, K. Xiao, P. Zhong, X. Li, Metall. Mater. Trans. A 48, 4046 (2017)

    Article  CAS  Google Scholar 

  9. J. Rehrl, K. Mraczek, A. Pichler, E. Werner, Mater. Sci. Eng. A 590, 360 (2014)

    Article  CAS  Google Scholar 

  10. M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Eng. Fail. Anal. 58, 485 (2015)

    Article  CAS  Google Scholar 

  11. M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak, B. Rajicic, Eng. Fract. Mech. 216, 106528 (2019)

    Article  Google Scholar 

  12. B.S. Kumar, V. Kain, M. Singh, B. Vishwanadh, Mater. Sci. Eng. A 700, 140 (2017)

    Article  CAS  Google Scholar 

  13. Y.H. Fan, B. Zhang, H.L. Yi, G.S. Hao, Y.Y. Sun, J.Q. Wang, E.-H. Han, W. Ke, Acta Mater. 139, 188 (2017)

    Article  CAS  Google Scholar 

  14. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 70, 174 (2014)

    Article  CAS  Google Scholar 

  15. G. Pressouyre, Metall. Trans. A 14, 2189 (1983)

    Article  Google Scholar 

  16. J. Lee, T. Lee, Y.J. Kwon, D.-J. Mun, J.-Y. Yoo, C.S. Lee, Met. Mater. Int. 22, 364 (2016)

    Article  CAS  Google Scholar 

  17. S. Zhang, Y. Huang, B. Sun, Q. Liao, H. Lu, B. Jian, H. Mohrbacher, W. Zhang, A. Guo, Y. Zhang, Mater. Sci. Eng. A 626, 136 (2015)

    Article  CAS  Google Scholar 

  18. A.I. Hwang, D.G. Lee, Y. Jung, J.-M. Koo, J.D. Cho, J.S. Lee, D.-W. Suh, Met. Mater. Int. 27, 3959 (2021)

  19. I. Jeong, K.M. Ryu, D.G. Lee, Y. Jung, K. Lee, J.S. Lee, D.-W. Suh, Scripta Mater. 169, 52 (2019)

    Article  CAS  Google Scholar 

  20. V. Olden, A. Saai, L. Jemblie, R. Johnsen, Int. J. Hydrogen Energ. 39, 1156 (2014)

    Article  CAS  Google Scholar 

  21. E. Owczarek, T. Zakroczymski, Acta Mater. 48, 3059 (2000)

    Article  CAS  Google Scholar 

  22. M.B. Whiteman, A.R. Troiano, Corrosion 21, 53 (1965)

    Article  CAS  Google Scholar 

  23. W.C. Luu, P.W. Liu, J.K. Wu, Corros. Sci. 44, 1783 (2002)

    Article  CAS  Google Scholar 

  24. S.-L. Chou, W.-T. Tsai, Mater. Sci. Eng. A 270, 219 (1999)

    Article  Google Scholar 

  25. W. Zheng, D. Hardie, Corrosion 47, 792 (1991)

    Article  CAS  Google Scholar 

  26. X.Z. Liang, G.-H. Zhao, M.F. Dodge, T.L. Lee, H.B. Dong, P.E.J. Rivera-Díaz-del-Castillo, Materialia 9, 100524 (2020)

    Article  CAS  Google Scholar 

  27. J. Michalska, M. Sozańska, Mater. Charact. 56, 355 (2006)

    Article  CAS  Google Scholar 

  28. D.E. Nelson, W.A. Baeslack III, J.C. Lippold, Mater. Charact. 39, 467 (1997)

    Article  Google Scholar 

  29. K. Ichitani, M. Kanno, S. Kuramoto, ISIJ Int. 43, 496 (2003)

    Article  CAS  Google Scholar 

  30. J.A. Ronevich, J.G. Speer, D.K. Matlock, SAE Int. J. Mater. Manuf. 3, 255 (2010)

    Article  Google Scholar 

  31. M.C. Young, S.L.I. Chan, L.W. Tsay, C.-S. Shin, Mater. Chem. Phys. 91, 21 (2005)

    Article  CAS  Google Scholar 

  32. Z. Li, X. Yang, A. Tang, Sci. Technol. Nucl. Install. 2019, 3591925 (2019)

  33. Y.H. Kim, J.W. Morris, Metall. Trans. A 14, 1883 (1983)

    Article  Google Scholar 

  34. M.B. Djukic, V.S. Zeravcic, G. Bakic, A. Sedmak, B. Rajicic, Procedia Mater. Sci. 3, 1167 (2014)

    Article  CAS  Google Scholar 

  35. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, I.M. Robertson, Acta Mater. 59, 1601 (2011)

    Article  CAS  Google Scholar 

  36. S. Frappart, A. Oudriss, X. Feaugas, J. Creus, J. Bouhattate, F. Thébault, L. Delattre, H. Marchebois, Scripta Mater. 65, 859 (2011)

    Article  CAS  Google Scholar 

  37. W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982)

    Article  Google Scholar 

  38. G.M. Pressouyre, I.M. Bernstein, Metall. Trans. A 9, 1571 (1978)

    Article  Google Scholar 

  39. P. Sofronis, I.M. Robertson, Philos. Mag. A 82, 3405 (2002)

    Article  CAS  Google Scholar 

  40. J. Tien, A.W. Thompson, I.M. Bernstein, R.J. Richards, Metall. Trans. A 7, 821 (1976)

    Article  Google Scholar 

  41. M.R. Louthan Jr., G.R. Caskey Jr., Int. J. Hydrogen Energ. 1, 291 (1976)

    Article  CAS  Google Scholar 

  42. M.R. Louthan Jr., G.R. Caskey Jr., J.A. Donovan, D.E. Rawl Jr., Mater. Sci. Eng. 10, 357 (1972)

    Article  CAS  Google Scholar 

  43. A.J. West, M.R. Louthan, Metall. Trans. A 10, 1675 (1979)

    Article  Google Scholar 

  44. J.A. Donovan, Metall. Trans. A 7, 145 (1976)

    Article  Google Scholar 

  45. J.A. Donovan, Metall. Trans. A 7, 1677 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2019R1C1C1010246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.G., Kim, J.H., Kim, S.H. et al. Hydrogen Trapping Characteristics and Mechanical Degradation in a Duplex Stainless Steel. Met. Mater. Int. 29, 126–134 (2023). https://doi.org/10.1007/s12540-022-01212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01212-w

Keywords

Navigation