Skip to main content
Log in

Fabrication of Al–Ti–B Grain Refiner Using Machining Ti Chips, Reaction Mechanisms and Grain Refinement Performance in Pure Al

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al–5Ti–1B grain refiner was successfully prepared with the reaction of Ti chips produced during machining and KBF4 in pure aluminum melt. In order to illustrate the reaction mechanism of Ti chips, the effect of different feeding ways and reaction times of Ti chips on microstructure and refining performance of Al–5Ti–1B was systematically investigated by optical microscope, scanning electron microscopy and X-ray diffractometer. The results show that, in three feeding ways, including adding Ti chips firstly, adding KBF4 firstly and adding both Ti chips and KBF4 in the form of prefabricated blocks, the best refining performance of Al–5Ti–1B is the feeding way of using the prefabricated block. TiB2 and TiAl3 as effective heterogeneous nuclei are formed simultaneously around the Ti chips. The average grain size of pure aluminum is refined to about 206.80 μm. The reaction time mainly affects the dissolution process of Ti chips and the average size of TiAl3. With the reaction time from 60 min to 90 min and then to 120 min, the average size of TiAl3 increases from 10.74 μm to 14.30 μm and then to 15.39 μm. During the dissolution process, Ti chips undergo a transition from a thermal isolation layer to a supersaturated zone of Ti atoms. Based on the analysis of the dissolution process of Ti chips, the dissolution model is proposed. Al–5Ti–1B has the best refining performance at 90 min of the reaction time, which can refine pure aluminum to about 223.65 μm.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Svynarenko, Y. Zhang, J. Jie, V. Kutsova, T. Li, Met. Mater. Int 23, 994 (2017)

    Article  CAS  Google Scholar 

  2. W. Ding, T. Chen, X. Zhao, Y. Cheng, X. Liu, L. Gou, Materials 13, 310 (2020)

    Article  CAS  Google Scholar 

  3. P. Jia, J. Zhang, M. Sheng, H. Luo, X. Teng, Z. Yang, X. Hu, G. Gao, D. Zhao, S. Zhang, G. Hu, Mater. Res. Express 6, 126523 (2019)

    Article  CAS  Google Scholar 

  4. A. Koltygin, V. Bazhenov, U. Mahmadiyorov, J. Magnes. Alloy. 5, 313 (2017)

    Article  CAS  Google Scholar 

  5. P. Qian, Z. Tang, M. Yuan, Y. Xiang, L. Wang, Mater. Sci. Tech-Lond 35, 1563 (2019)

    Article  CAS  Google Scholar 

  6. Y. Birol, J. Alloy. Compd. 440, 108 (2007)

    Article  CAS  Google Scholar 

  7. T. Wang, Z. Chen, H. Fu, T. Li, Met. Mater. Int. 19, 367 (2013)

    Article  Google Scholar 

  8. Q.L. Wang, H.S. Zhao, Z.G. Li, L. Shen, J.Z. Zhao, T. Nonferr. Metal. Soc. 23, 294 (2013)

    Article  CAS  Google Scholar 

  9. Y. Birol, J. Alloy. Compd. 458, 271 (2008)

    Article  CAS  Google Scholar 

  10. Y. Birol, J. Alloy. Compd. 420, 71 (2006)

    Article  CAS  Google Scholar 

  11. Y. Birol, J. Alloy. Compd. 420, 207 (2006)

    Article  CAS  Google Scholar 

  12. J. Cai, A. Kulovits, M.R. Shankar, J. Wiezorek, J. Mater. Sci. 43, 7474 (2008)

    Article  CAS  Google Scholar 

  13. K. Vutova, V. Vassileva, E. Koleva, E. Georgieva, G. Mladenov, D. Mollov, M. Kardjiev, J. Mater. Process. Tech. 210, 1089 (2010)

    Article  CAS  Google Scholar 

  14. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater. 84, 292 (2015)

    Article  CAS  Google Scholar 

  15. L. Yu, X. Liu, J. Alloy. Compd. 425, 245 (2006)

    Article  CAS  Google Scholar 

  16. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Acta Mater. 48, 2823 (2000)

    Article  CAS  Google Scholar 

  17. L. Zhang, H. Jiang, J. Zhao, J. He, J. Mater. Process. Tech. 246, 205 (2017)

    Article  CAS  Google Scholar 

  18. Y. Li, B. Hu, B. Liu, A. Nie, Q. Gu, J. Wang, Q. Li, Acta Mater. 187, 51 (2020)

    Article  CAS  Google Scholar 

  19. C.M. Fang, Z. Fan, Comp. Mater. Sci. 153, 309 (2018)

    Article  CAS  Google Scholar 

  20. H.D. Alamdari, D. Dubé, P. Tessier, Metall. Mater. Trans. A 44, 388 (2013)

    Article  Google Scholar 

  21. W. Ding, W. Zhao, T. Xia, Int. J. Cast. Metal. Res. 27, 187 (2014)

    Article  CAS  Google Scholar 

  22. M.M. Guzowski, G.K. Sigworth, D.A. Sentner, Metall. Mater. Trans. A 18, 603 (1987)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Key Research and Development Program of China (No. 2019YFB2006500).

Funding

The national key research and development program (No. 2019YFB2006500).

Author information

Authors and Affiliations

Authors

Contributions

Maoliang Hu, Fei Wang, Bo Jiang, Huasheng Wang, Yile Liu and Zesheng Ji designed research, performed research, analyzed data, and Fei Wang wrote the paper.

Corresponding author

Correspondence to Maoliang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Wang, F., Jiang, B. et al. Fabrication of Al–Ti–B Grain Refiner Using Machining Ti Chips, Reaction Mechanisms and Grain Refinement Performance in Pure Al. Met. Mater. Int. 28, 1471–1479 (2022). https://doi.org/10.1007/s12540-021-01011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01011-9

Keywords

Navigation