Skip to main content
Log in

Influence of Microstructure Constituents on the Hydrogen‐Induced Mechanical Degradation in Ultra‐High Strength Sheet Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We investigate the influence of constituent phases on the hydrogen-induced mechanical degradation in two ultra-high strength sheet steels. In the complex phase (CP) steel, of which microstructure can be regarded as monolithic in terms of hydrogen behaviors, the rate of hydrogen uptake gradually decreases with the charging time, while the transformation-induced plasticity (TRIP) steel exhibits a persistent hydrogen absorption up to the charging time of 48 h, which is attributed to the presence of austenite. The mechanical degradation of TRIP steel goes beyond that of the CP steel at charging time over 12 h, coincident with the condition in which the austenite contributes to the hydrogen uptake. Both the ultra-high strength and the presence of austenite have unfavorable influence on the hydrogen embrittlement. Therefore, in the TRIP steel, it is necessary to evaluate quantitatively the critical hydrogen concentration over which more care should be taken to reduce the risk of hydrogen-induced mechanical degradation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Lovicu, M. Bottazzi, F. D’aiuto, M. De Sanctis, A. Dimatteo, C. Santus, R. Valentini, Metall. Mater. Trans. A 43, 4075 (2012)

    Article  CAS  Google Scholar 

  2. M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 49, 4081 (2007)

    Article  CAS  Google Scholar 

  3. H.K.D.H. Bhadeshia, ISIJ Int. 56, 24 (2016)

    Article  CAS  Google Scholar 

  4. I.M. Robertson, P. Sofronis, A. Nagao, M. Martin, S. Wang, D. Gross, K. Nygren, Metall. Mater. Trans. B 46, 1085 (2015)

    Article  CAS  Google Scholar 

  5. M. Loidl, O. Kolk, S. Veith, T. Göbel, Materialwiss. Werkstofftech. 42, 1105 (2011)

    Article  CAS  Google Scholar 

  6. M.A. Mohtadi-Bonab, H. Ghesmati-Kucheki, Met. Mater. Int. 25, 1109 (2019)

    Article  CAS  Google Scholar 

  7. A. Drexler, C. Bergmann, G. Manke, V. Kokotin, K. Mraczek, M. Pohl, W. Ecker, Mater. Sci. Eng. A 800, 140276 (2021)

    Article  CAS  Google Scholar 

  8. S. Takagi, Y. Toji, M. Yoshino, K. Hasegawa, ISIJ Int. 52, 316 (2012)

    Article  CAS  Google Scholar 

  9. J.N. Hall, J.R. Fekete, in Automotive Steels, ed. by R. Rana, S.B. Singh (Woodhead Publishing, Sawston, 2017), pp. 19-45 

  10. M. Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882 (2020)

    Article  Google Scholar 

  11. F. Najafkhani, H. Mirzadeh, M. Zamani, Met. Mater. Int. 25, 1039 (2019)

    Article  CAS  Google Scholar 

  12. N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168 (2020)

    Article  CAS  Google Scholar 

  13. T. Senuma, ISIJ Int. 41, 520 (2001)

    Article  CAS  Google Scholar 

  14. I. Jeong, K.M. Ryu, D.G. Lee, Y. Jung, K. Lee, J.S. Lee, D.-W. Suh, Scripta Mater. 169, 52 (2019)

    Article  CAS  Google Scholar 

  15. S.K. Dwivedi, M. Vishwakarma, Int. J. Hydrogen Energy 44, 28007 (2019)

    Article  CAS  Google Scholar 

  16. B. Sun, W. Krieger, M. Rohwerder, D. Ponge, D. Raabe, Acta Mater. 183, 313 (2020)

    Article  CAS  Google Scholar 

  17. J.H. Kim, M.-H. Kwon, G. Gu, J.S. Lee, and D.-W. Suh, Materialia 12, 100757 (2020)

    Article  CAS  Google Scholar 

  18. D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs, JESTECH 15, 1 (2012)

    Google Scholar 

  19. J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Met. Mater. Int. 25, 1161 (2019)

    Article  CAS  Google Scholar 

  20. K. Rundman, R. Klug, Tran. Amer. F. 90, 499 (1982)

    CAS  Google Scholar 

  21. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall, Upper Saddle River, 2001), p. 351

  22. ISO, 17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique (2004)

  23. T. Narutani, Mater. Trans. JIM 30, 33 (1989)

    Article  CAS  Google Scholar 

  24. S. Oliver, T. Jones, G. Fourlaris, Mater. Charact. 58, 390 (2007)

    Article  CAS  Google Scholar 

  25. D.P. Escobar, T. Depover, L. Duprez, K. Verbeken, M. Verhaege, Acta Mater. 60, 2593 (2012)

    Article  Google Scholar 

  26. F.-G. Wei, K. Tsuzaki, Scripta Mater. 52, 467 (2005)

    Article  CAS  Google Scholar 

  27. D.P. Escobar, K. Verbeken, L. Duprez, M. Verhaege, Mater. Sci. Eng. A 551, 50 (2012)

    Article  Google Scholar 

  28. Y. Murakami, T. Kanezaki, Y. Mine, S. Matsuoka, Metall. Mater. Trans. A 39, 1327 (2008)

    Article  Google Scholar 

  29. G.R. Caskey, R.D. Sisson, Scripta Metall. 15, 1187 (1981)

    Article  CAS  Google Scholar 

  30. A. San-Martin, F.D. Manchester, Bull. Alloy Phase Diagrams 11, 173 (1990)

    Article  CAS  Google Scholar 

  31. K. Kiuchi, R.B. McLellan, Acta Metall. 31, 961 (1983)

    Article  CAS  Google Scholar 

  32. J.H. Ryu, Y.S. Chun, C.S. Lee, H. Bhadeshia, D.-W. Suh, Acta Mater. 60, 4085 (2012)

    Article  CAS  Google Scholar 

  33. Y. Park, I. Maroef, A. Landau, D. Olson, Weld. J. 81, 27 (2002)

    Google Scholar 

  34. J.A. Ronevich, J.G. Speer, D.K. Matlock, SAE Int. J. Mater. Manuf. 3, 255 (2010)

    Article  Google Scholar 

  35. P. Rozenak, R. Bergman, Mater. Sci. Eng. A 437, 366 (2006)

    Article  Google Scholar 

  36. A. Laureys, T. Depover, R. Petrov, K. Verbeken, Int. J. Hydrogen Energy 40, 16901 (2015)

    Article  CAS  Google Scholar 

  37. D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, S.-J. Kim, Metall. Mater. Trans. A 41, 397 (2010)

    Article  Google Scholar 

  38. M.Y. Sherif, C.G. Mateo, T. Sourmail, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 20, 319 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Suh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, A.I., Lee, D.G., Jung, Y. et al. Influence of Microstructure Constituents on the Hydrogen‐Induced Mechanical Degradation in Ultra‐High Strength Sheet Steels. Met. Mater. Int. 27, 3959–3967 (2021). https://doi.org/10.1007/s12540-021-00968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00968-x

Keywords

Navigation