Skip to main content
Log in

Role of Grain Size and Oxide Dispersion Nanoparticles on the Hot Deformation Behavior of AA6063: Experimental and Artificial Neural Network Modeling Investigations

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of coarse-grained (CG), ultrafine-grained (UFG), and oxide dispersion-strengthened (ODS) AA6063 is experimentally recognized though carrying out compression tests at different temperatures (300–450 °C) and strain rates (0.01–1 s−1). Microstructural studies conducted by TEM and EBSD indicate that dynamic softening mechanisms including dynamic recovery and dynamic recrystallization become operative in all the investigated materials depending on the regime of deformation. Moreover, the high temperature flow behavior is considerably influenced by the initial grain structure and the presence of reinforcement particles. The constitutive and artificial neural network (ANN) models were used to study the high-temperature flow behavior of the investigated alloys. To establish an accurate ANN model, material characteristics along with the processing parameters are deliberated. An Arrhenius type constitutive model with a strain-compensation term is employed to predict the flow stress of AA6063 alloys. The relative error associated with the constitutive and ANN models in the prediction of the flow stress is obtained 9.56% and 2.02%, respectively. The analysis indicates that the developed ANN model is more accurate in the prediction of flow stress with at least 78% less error in comparison to the constitutive model.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Bruni, A. Forcellese, F. Gabrielli, M. Simoncini, J. Mater. Process. Tech. 177, 323 (2006)

    Article  CAS  Google Scholar 

  2. K.P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt, J. Mater. Process. Tech. 56, 897 (1996)

    Article  Google Scholar 

  3. N.S. Reddy, Y.H. Lee, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 492, 276 (2008)

    Article  Google Scholar 

  4. Y.H. Xiao, C. Guo, X.Y. Guo, Mater. Sci. Eng. A 528, 6510 (2011)

    Article  CAS  Google Scholar 

  5. Y.B. Tan, Y.H. Ma, F. Zhao, J. Alloy. Compd. 741, 85 (2018)

    Article  CAS  Google Scholar 

  6. X. Qin, D. Huang, X. Yan, X. Zhang, M. Qi, S. Yue, J. Alloy. Compd. 770, 507 (2019)

    Article  CAS  Google Scholar 

  7. J. Yan, Q. Pan, A. Li, W. Song, Trans. Nonferr. Metal. Soc. 27, 638 (2017)

    Article  CAS  Google Scholar 

  8. L. Liu, Y. Wu, H. Gong, K. Wang, Trans. Nonferr. Metal. Soc. 29, 448 (2019)

    Article  CAS  Google Scholar 

  9. Y. Xia, W. Jiang, Q. Cheng, L. Jiang, L. Jin, Trans. Nonferr. Metal. Soc. 30, 134 (2020)

    Article  CAS  Google Scholar 

  10. S. Kumar, B. Aashranth, M.A. Davinci, D. Samantaray, U. Borah, A.K. Bhaduri, J. Mater. Eng. Perform. 27, 2024 (2018)

    Article  CAS  Google Scholar 

  11. C. Huang, X. Jia, Z. Zhang, Materials (Basel) 11, 855 (2018)

    Article  Google Scholar 

  12. S. Mandal, P.V. Sivaprasad, S. Venugopal, K.P.N. Murthy, Appl. Soft Comput. 9, 237 (2009)

    Article  Google Scholar 

  13. J. Liu, H. Chang, T.Y. Hsu, X. Ruan, J. Mater. Process. Tech. 103, 200 (2000)

    Article  Google Scholar 

  14. G. Ji, F. Li, Q. Li, H. Li, Z. Li, Mater. Sci. Eng. A 528, 4774 (2011)

    Article  Google Scholar 

  15. O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi, N. Haghdadi, Mater. Design 39, 390 (2012)

    Article  CAS  Google Scholar 

  16. R. Kapoor, D. Pal, J.K. Chakravartty, J. Mater. Process. Tech. 169, 199 (2005)

    Article  CAS  Google Scholar 

  17. A. Gholamzadeh, A. Karimi Taheri, Mech. Res. Commun. 36, 252 (2009)

    Article  Google Scholar 

  18. I.S. Jalham, J. Mater. Process. Tech. 166, 392 (2005)

    Article  CAS  Google Scholar 

  19. L.X. Kong, P.D. Hodgson, D.C. Collinson, J. Mater. Process. Tech. 102, 84 (2000)

    Article  Google Scholar 

  20. P.D. Hodgson, L.X. Kong, C.H.J. Davies, J. Mater. Process. Tech. 87, 131 (1999)

    Article  Google Scholar 

  21. M. Li, A. Xiong, W. Huang, H. Wang, S. Su, L. Shen, Mater. Charact. 49, 203 (2002)

    Article  CAS  Google Scholar 

  22. A. Canakci, T. Varol, S. Ozsahin, Int. J. Adv. Manuf. Tech. 78, 305 (2015)

    Article  Google Scholar 

  23. H. Asgharzadeh, A. Simchi, H.S. Kim, Mater. Sci. Eng. A 527, 4897 (2010)

    Article  Google Scholar 

  24. H. Asgharzadeh, A. Simchi, H.S. Kim, Mater. Sci. Eng. A 528, 3981 (2011)

    Article  Google Scholar 

  25. H. Asgharzadeh, A. Simchi, H.S. Kim, Metall. Mater. Trans. A 42, 816 (2011)

    Article  CAS  Google Scholar 

  26. C.M. Sellars, W.J. McTegart, Acta Metall. 14, 1136 (1966)

    Article  CAS  Google Scholar 

  27. H. Asgharzadeh, H.S. Kim, A. Simchi, Mater. Charact. 75, 108 (2013)

    Article  CAS  Google Scholar 

  28. H. Asgharzadeh, A. Simchi, H.S. Kim, Scripta Mater. 66, 911 (2012)

    Article  CAS  Google Scholar 

  29. Ö. Kişi, E. Uncuoğlu, Indian J. Eng Mater. Sci. 12, 434 (2005)

    Google Scholar 

  30. C. Lv, Y. Xing, J. Zhang, X. Na, Y. Li, T. Liu, D. Cao, F.Y. Wang, IEEE Trans. Ind. Inform. 14, 3436 (2018)

    Article  Google Scholar 

  31. S. Karsoliya, Int. J. Eng. Trends Technol. 3, 714 (2012)

    Google Scholar 

  32. M. Berry, G. Linoff, Data Mining Techniques, 1st edn. (Wiley, New York, 1997)

    Google Scholar 

  33. Y.C. Lin, J. Zhang, J. Zhong, Comput. Mater. Sci. 43, 752 (2008)

    Article  CAS  Google Scholar 

  34. A. Asgharzadeh, H. Jamshidi Aval, S. Serajzadeh, J. Mater. Eng. Perform. 25, 1076 (2016)

    Article  CAS  Google Scholar 

  35. C. Chen, H. Yin, I.S. Humail, Y. Wang, X. Qu, Int. J. Refract. Met. Hard Mater. 25, 411 (2007)

    Article  Google Scholar 

  36. A. Asgharzadeh, S.A. Nazari Tiji, T. Park, J.H. Kim, F. Pourboghrat, J. Mater. Sci. 55, 7938 (2020)

    Article  CAS  Google Scholar 

  37. R.H. Wu, J.T. Liu, H.B. Chang, T.Y. Hsu, X.Y. Ruan, J. Mater. Process. Tech. 116, 211 (2001)

    Article  CAS  Google Scholar 

  38. Q. Dai, Y. Deng, J. Tang, Y. Wang, Trans. Nonferr. Metal. Soc. 29, 2252 (2019)

    Article  CAS  Google Scholar 

  39. A. Asgharzadeh, S.A. Nazari Tiji, R. Esmaeilpour, T. Park, F. Pourboghrat, Int. J. Adv. Manuf. Tech. 106, 315 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

AS would like to thank Sharif University of Technology (No. QA970816) and Iran National Science Foundation (INSF No. 95-S-48740) for the financial support of this project.

Funding

This project is funded by Sharif University of Technology (No. QA970816) and Iran National Science Foundation (INSF No. 95-S-48740).

Author information

Authors and Affiliations

Authors

Contributions

A. Asgharzadeh (Data curation; Validation; Code development; Investigation; Methodology; Writing-original draft); H. Asgharzadeh (Conceptualization; Supervision; Writing-review & editing; Methodology; Experimenting); A. Simchi (Funding acquisition; Project administration; Supervision; Writing-review & editing).

Corresponding author

Correspondence to H. Asgharzadeh.

Ethics declarations

Conflicts of interest

The authors declare that they have no known conflicts of interest/competing interests that could have appeared to influence the work reported in this paper.

Availability of Data and Material

The data provided in this study could be released upon logical requests.

Code Availability

As the model explained in this study forms part of an ongoing study, the developed codes required to reproduce these findings cannot be shared at this time.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, A., Asgharzadeh, H. & Simchi, A. Role of Grain Size and Oxide Dispersion Nanoparticles on the Hot Deformation Behavior of AA6063: Experimental and Artificial Neural Network Modeling Investigations. Met. Mater. Int. 27, 5212–5227 (2021). https://doi.org/10.1007/s12540-020-00950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00950-z

Keywords

Navigation