Skip to main content
Log in

Effect of Stress Aging Induced Precipitates on Corrosion Behavior of NiTi Shape Memory Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the influences of the stress aging process on the electrochemical behaviors toward evaluating corrosion resistance of NiTi shape memory alloys in the in-vitro condition have been investigated. For this approach, the samples have been manufactured by introducing multiple precipitation morphology in the alloy structure via applying different levels of stresses during the aging process. The samples were characterized using multiply electron microscopy, electrochemical methods, X-ray diffraction, and differential scanning calorimetry. Results show that by prolonging aging time from 1 to 5 h and increasing the stress aging level (15–60-150 MPa) the corrosion resistance improves, which is implied a better formation of a protective layer. It seems that homogeneous precipitation of Ni-rich phases under the stress aging process improves the corrosion resistance of the alloy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.M. Huang, Z. Ding, C.C. Wang, J. Wei, Y. Zhao, H. Purnawali, Mater. Today. 13, 54–61 (2010)

    Article  CAS  Google Scholar 

  2. J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Design 56, 1078–1113 (2014)

    Article  CAS  Google Scholar 

  3. R.C.L. Sachdeva, S. Miyazaki, Z.H. Dughaish, Reference Module in Materials Science and Materials Engineering, Nitinol as a Biomedical Material (Elsevier, Amsterdam, 2016), pp. 1–13

    Google Scholar 

  4. R. Sewak, C.C. Dey, Sci. Rep. 9, 1–8 (2019)

    Article  CAS  Google Scholar 

  5. P. Dalvand, S. Raygan, G.A. López, M.B. Meléndez, V.A. Chernenko, Met. Mater. Int. 26, 1354–1365 (2019)

    Article  CAS  Google Scholar 

  6. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. 4, 773–782 (2008)

    Article  CAS  Google Scholar 

  7. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54, 397–425 (2009)

    Article  CAS  Google Scholar 

  8. E.S.M. Sherif, F.H. Latief, H.S. Abdo, N.H. Alharthi, Met. Mater. Int. 25, 1511–1520 (2019)

    Article  CAS  Google Scholar 

  9. Q. Chen, G.A. Thouas, Mater. Sci. Eng. R Rep 87, 1–57 (2015)

    Article  Google Scholar 

  10. B. O’Brien, F.M. Weafer, M.S. Bruzzi, in Comprehensive Biomaterials II, ed. by P. Ducheyne, Shape Memory Alloys for Use in Medicine, Vol. 1, (Elsevier, Amsterdam, 2017), pp. 50–78

  11. M. Pourbaix, Biomaterials 5, 122–134 (1984)

    Article  CAS  Google Scholar 

  12. S.A. Shabalovskaya, H. Tian, J.W. Anderegg, D.U. Schryvers, W.U. Carroll, J. Van Humbeeck, Biomaterials 30, 468–477 (2009)

    Article  CAS  Google Scholar 

  13. H. Tian, D. Schryvers, D. Liu, Q. Jiang, J. Van Humbeeck, Acta Biomater. 7, 892–899 (2011)

    Article  CAS  Google Scholar 

  14. J. Ševčíková, D. Bártková, M. Goldbergová, M. Kuběnová, J. Čermák, J. Frenzel, A. Weiser, A. Dlouhý, Appl. Surf. Sci. 427, 434–443 (2018)

    Article  CAS  Google Scholar 

  15. F. Auricchio, E. Boatti, M. Conti, in Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, ed. by L. Lecce, & A. Concilio (Elsevier, Amsterdam, 2014)

    Google Scholar 

  16. R. Hang, F. Zhao, X. Yao, B. Tang, P.K. Chu, Appl. Surf. Sci. 517, 146118 (2020)

    Article  CAS  Google Scholar 

  17. S. Shabalovskaya, J. Anderegg, J. Van Humbeeck, Acta Biomater. 4, 447–467 (2008)

    Article  CAS  Google Scholar 

  18. R.W.Y. Poon, J.P.Y. Ho, X. Liu, C.Y. Chung, P.K. Chu, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, Mater. Sci. Eng. A 390, 444–451 (2005)

    Article  CAS  Google Scholar 

  19. A. Dehghanghadikolaei, H. Ibrahim, A. Amerinatanzi, M. Hashemi, N.S. Moghaddam, M. Elahinia, J. Mater. Sci. 54, 7333–7355 (2019)

    Article  CAS  Google Scholar 

  20. F. Mohammadi, M. Kharaziha, A. Ashrafi, Met. Mater. Int. 25, 617–626 (2019)

    Article  CAS  Google Scholar 

  21. A. Gao, R. Hang, L. Bai, B. Tang, P.K. Chu, Electrochim. Acta 271, 699–718 (2018)

    Article  CAS  Google Scholar 

  22. Y. Su, C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, Y. Liang, G. Li, L. Ren, J. Mech. Behav. Biomed. Mater. 77, 90–105 (2018)

    Article  CAS  Google Scholar 

  23. S.A. Fadlallah, N. El-Bagoury, S.M.F. Gad El-Rab, R.A. Ahmed, G. El-Ousamii, J. Alloy. Compd. 583, 455–464 (2014)

    Article  CAS  Google Scholar 

  24. N. Rahimi, R.A. Pax, E.M. Gray, Prog. Solid State Ch. 44, 86–105 (2016)

    Article  CAS  Google Scholar 

  25. I. Milošev, B. Kapun, Mater. Sci. Eng. C 32, 1068-1077 (2012)

    Article  CAS  Google Scholar 

  26. I. Milošev, B. Kapun, Mater. Sci. Eng. C 32, 1087–1096 (2012)

    Article  CAS  Google Scholar 

  27. P. Lu, M. Wu, X. Liu, W. Duan, J. Han, Met. Mater. Int. 26, 1182–1191 (2020)

    Article  CAS  Google Scholar 

  28. N.P. Hunt, S.J. Cunningham, G.G. Golden, M. Sheriff, Angle Orthod. 69, 433–440 (1999)

    CAS  Google Scholar 

  29. E.O. Nasakina, M.A. Sevost’yanov, M.A. Gol’dberg, K.Y. Demin, A.S. Baikin, B.A. Goncharenko, V.A. Cherkasov, A.G. Kolmakov, V.T. Zabolotnyi, Inorg. Mater. Appl. Res. 6, 53–58 (2015)

    Article  Google Scholar 

  30. Y. Oshida, in Bioscience and Bioengineering of Titanium Materials, Oxidation and Oxides (Elsevier, Amsterdam, 2013), pp. 87–115

    Book  Google Scholar 

  31. W. Han, F. Fang, Int. J. Mach. Tools Manuf. 139, 1–23 (2019)

    Article  CAS  Google Scholar 

  32. M. Yuan, Y. Deng, S. Lin, X. Guo, Y. Xie, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00865-9

    Article  Google Scholar 

  33. D. Vojtěch, M. Voděrová, J. Kubásek, P. Novák, P. Šedá, A. Michalcová, J. Fojt, J. Hanuš, O. Mestek, Mater. Sci. Eng. A 528, 1864–1876 (2011)

    Article  CAS  Google Scholar 

  34. J. Khalil-allafi, A. Dlouhy, G. Eggeler, Acta Mater. 50, 4255–4274 (2002)

    Article  CAS  Google Scholar 

  35. J. Khalil Allafi, A. Dlouhy, G. Eggeler, J. Phys. IV 112, 681–684 (2003)

    Google Scholar 

  36. D.Y. Li, L.-Q. Chen, Acta Mater. 46, 639–649 (1998)

    Article  CAS  Google Scholar 

  37. D.Y. Li, L.Q. Chen, J. Phase Equilib. 19, 523–528 (1998)

    Article  CAS  Google Scholar 

  38. L. Tan, W.C. Crone, Acta Mater. 50, 4449–4460 (2002)

    Article  CAS  Google Scholar 

  39. J.S. Suwandi, R.E.M. Toes, T. Nikolic, B.O. Roep, Clin. Exp. Rheumatol. 33, 97–103 (2015)

    Google Scholar 

  40. C.H. Xu, X.Q. Ma, S.Q. Shi, C.H. Woo, Mater. Sci. Eng. A 371, 45–50 (2004)

    Article  CAS  Google Scholar 

  41. K. Fujishima, M. Nishida, Y. Morizono, K. Yamaguchi, K. Ishiuchi, T. Yamamuro, Mater. Sci. Eng. A 438–440, 489–494 (2006)

    Article  CAS  Google Scholar 

  42. K.S. Kim, K.K. Jee, W.C. Kim, W.Y. Jang, S.H. Han, Mater. Sci. Eng. A 481–482, 658–661 (2008)

    Article  CAS  Google Scholar 

  43. G. Ji, Z. Zhang, Y. Liu, X. Ding, J. Sun, X. Ren, J. Alloy. Compd. 448, 171–176 (2008)

    Article  CAS  Google Scholar 

  44. A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Philos. Mag. 83, 339–363 (2003)

    Article  CAS  Google Scholar 

  45. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Prog. Mater. Sci. 57, 911–946 (2012)

    Article  CAS  Google Scholar 

  46. A. Radi, J. Khalil-Allafi, M.R. Etminanfar, S. Pourbabak, D. Schryvers, B. Amin-Ahmadi, Mater. Design 142, 93–100 (2018)

    Article  CAS  Google Scholar 

  47. V. Khalili, J. Khalil-Allafi, J. Frenzel, G. Eggeler, Mater. Sci. Eng. C 71, 473–482 (2016)

    Article  CAS  Google Scholar 

  48. D. Dzhurinskiy, Y. Gao, W.-K. Yeung, E. Strumban, V. Leshchinsky, P.-J. Chu, A. Matthews, A. Yerokhin, R.G. Maev, Surf. Coat. Tech. 269, 258–265 (2015)

    Article  CAS  Google Scholar 

  49. J. Khalil-allafi, G. Eggeler, A. Dlouhy, W.W. Schmahl, C. Somsen, Mater. Sci. Eng. A  378, 148–151 (2004)

    Article  CAS  Google Scholar 

  50. D. Schryvers, W. Tirry, Z.Q. Yang, Mater. Sci. Eng. A 440, 485–488 (2006)

    Article  CAS  Google Scholar 

  51. Z. Yang, W. Tirry, D. Schryvers, Scripta Mater. 52, 1129–1134 (2005)

    Article  CAS  Google Scholar 

  52. C.B. Ke, S. Cao, X.P. Zhang, Comp. Mater. Sci. 105, 55–65 (2015)

    Article  CAS  Google Scholar 

  53. R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control: An Introduction to corrosion Science and Engineering, 4th edn. (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  54. B.N. Popov, Corrosion Engineering: Principles and Solved Problems, 1st edn. (Elsevier, Amsterdam, 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rezaei-Moghadam.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radi, A., Khalil-Allafi, J., Heidarzadeh, A. et al. Effect of Stress Aging Induced Precipitates on Corrosion Behavior of NiTi Shape Memory Alloys. Met. Mater. Int. 27, 3968–3974 (2021). https://doi.org/10.1007/s12540-020-00935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00935-y

Keywords

Navigation