Skip to main content
Log in

Grain Refinement and Thermal Stability of 2219 Aluminum Alloy in the Warm Deformation Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

2219 Al alloy is an important material for manufacturing launch vehicles, and its grain structure has a substantial effect on the performance of storage tank transition rings. In this work, warm compression tests (100–350 °C) of 2219 Al alloy were carried out, a grain refinement model of warm deformation was established, and the evolution and thermal stability of the static recrystallized grain size D were analyzed. The results showed that static recrystallization is the main mechanism of grain refinement, and that the nucleation rate and grain refining effects were significantly improved by decreasing the deformation temperatures (T). The established model was found to be accurate, and the predicted and experimental values exhibited high degrees of coincidence. When T and the amount of deformation (Δd) were respectively 150 °C and 70%, the value of D was reduced from 60 μm to 21 μm. Additionally, when the solution treatment time was increased from 0 to 4 h, there was a slight change in the values of D (high thermal stability) when T was lower than 250 °C and Δd was greater than 20%, but they significantly increased when Δd was less than 10%.

Graphic Abstract

In this paper, the effects of different deformation temperatures T and deformation amount Δd on average grain size D of 2219 Al alloy forgings were investigated, and the evolution rule and thermal stability of D were analyzed. The research results showed that static recrystallization was the main mechanism for grain refinement of 2219 forgings, and the nucleation rate and grain refining effects were improved by increasing Δd and decreasing T. Warm compression was conducive to accumulating higher-density dislocations, storing more deformation energy, generating more high energy distortion points. Hence, increasing the recrystallization nucleation rate and decreasing grains growth velocity. Furthermore, the thermal stability of grain sizes increased with the decreasing recrystallization grain size and uniformity. Because there is a low energy difference between fine and uniform grains (the interface energy was very low), which led to slow grain boundary migration speed and restraining grain growth even at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W. Guo, Y. Yi, S. Huang, X. Mao, J. Fang, H. He, B. Hu, Mater. Charact. 160, 110094 (2020)

    Article  CAS  Google Scholar 

  2. Y. Lu, J. Wang, X. Li, W. Li, R. Li, ​D. Zhou, Mater. Sci. Eng. A 723, 204 (2018)

    Article  CAS  Google Scholar 

  3. S. Rajakumar, T. Christopher, T. Nonferr. Metal. Soc. 21, 2568 (2011)

    Article  CAS  Google Scholar 

  4. W. Guo, Y. Yi, S. Huang, H. He, J. Fang, Met. Mater. Int. 26, 56 (2020)

    Article  CAS  Google Scholar 

  5. Z. Ni, H. Zhao, P. Mi, F. Ye, Mater. Design 92, 779 (2016)

    Article  CAS  Google Scholar 

  6. Q. Wu, J. Wu, Y. Zhang, H. Gao, D. Hui, Int. J. Mech. Sci. 157–158, 111 (2019)

    Article  Google Scholar 

  7. H. He, Y. Yi, J. Cui, S. Huang, Vacuum, 160, 293 (2019)

    Article  CAS  Google Scholar 

  8. H. Wang, Y. Yi, S. Huang, J. Alloy. Compd. 690, 446 (2017)

    Article  CAS  Google Scholar 

  9. L. Liu, Y.-X. Wu, H. Gong, K. Wang, T. Nonferr. Metal. Soc. 29, 448 (2019)

    Article  CAS  Google Scholar 

  10. G. Maizza, R. Pero, M. Richetta, R. Montanari, J. Mater. Sci. 53, 4563 (2018)

    Article  CAS  Google Scholar 

  11. H. He, Y. Yi, S. Huang, Y. Zhang, J. Mater. Sci. Technol. 35, 55 (2019)

    Article  Google Scholar 

  12. H. He, Y. Yi, S. Huang, W. Guo, Y. Zhang, J. Mater. Process. Technol. 278, 116506 (2020)

    Article  CAS  Google Scholar 

  13. M. Gazizov, S. Malopheyev, R. Kaibyshev, J. Mater. Sci. 50, 990 (2015)

    Article  CAS  Google Scholar 

  14. G. He, Y. Zhao, B. Gan, X. Sheng, Y. Liu, L. Tan. J. Alloy. Compd. 815, 152382 (2020)

    Article  CAS  Google Scholar 

  15. H.E. Hu, L. Zhen, B.Y. Zhang, L. Yang, J.Z. Chen, Mater. Charact. 59, 1185 (2008)

    Article  CAS  Google Scholar 

  16. Z. Liao, M. Polyakov, O.G. Diaz, D. Axinte, G. Mohanty, X. Maeder, J. Michler, M. Hardy, Acta Mater. 180, 2 (2019)

  17. G.-Z. Quan, Y.-l. Li, L. Zhang, X. Wang, Vacuum 139, 51 (2017)

    Article  CAS  Google Scholar 

  18. M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, D. Fabijanic, Mater. Sci. Eng. A 754, 282 (2019)

  19. L. Liu, Y. Wu, H. Gong, S. Li, A.S. Ahmad, Materials 11, 1443 (2018)

    Article  Google Scholar 

  20. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng. A 473, 297 (2008)

    Article  Google Scholar 

  21. Y.-J. Chen, Q.-D. Wang, J.-B. Lin, M.-P. Liu, J. Hjelen, H.J. Roven, T. Nonferr. Metal. Soc. 24, 3747 (2014)

    Article  CAS  Google Scholar 

  22. M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng. A 527, 7832 (2010)

    Article  Google Scholar 

  23. H. Tanaka, T. Minoda, T. Nonferr. Metal. Soc. 24, 2187 (2014)

  24. J.L. Milner, F. Abu-Farha, C. Bunget, T. Kurfess, V.H. Hammond, Mater. Sci. Eng. A 561, 109 (2013)

  25. J. Su, M. Sanjari, A.S.H. Kabir, J.J. Jonas, S. Yue, Mater. Sci. Eng. A 662, 412 (2016)

  26. S.S.A. Shah, D. Wu, R.S. Chen, G.S. Song, J. Alloy. Compd. 805, 189 (2019)

    Article  CAS  Google Scholar 

  27. P. Cotterill, P.R. Mould, Recrystallization and Grain Growth in Metals (Surrey University Press, London, 1976), pp. 266–325

    Google Scholar 

  28. L. Liu, Wu. Yunxin, H. Gong, Materials 11, 1496 (2018)

    Article  Google Scholar 

  29. M. Weimin, Z. Xinbing, Recrystallization and Grain Growth of Metals (Metallurgical Industry Press, Beijing, 1994), pp. 218–241

    Google Scholar 

  30. H.-W. Son, C.-H. Cho, J.-C. Lee, K.-H. Yeon, J.-W. Lee, H.S. Park, S.-K. Hyun, J. Alloy. Compd. 814, 152311 (2020)

    Article  CAS  Google Scholar 

  31. P. Cotterill, P.R. Mould, Recrystallization and Grain Growth in Metals (Surrey University Press, London, 1976), pp. 307–315

    Google Scholar 

  32. H. She, Da. Shu, A. Dong, J. Wang, B. Sun, H. Lai, J. Mater. Sci. Technol. 35, 2570 (2019)

    Article  Google Scholar 

  33. A. Biswas, D.J. Siegel, C. Wolverton, D.N. Seidman, Acta Mater. 59, 6187 (2011)

    Article  CAS  Google Scholar 

  34. Q. Chu, G. Shijie, J. Yanli, Heat Treat. Met. 45, 27 (2020)

    Google Scholar 

  35. C.S. Smith, Trans. Metall. Soc. AIME 175, 15 (1948)

    Google Scholar 

  36. S.D. Liu, Y.B. Yuan, C.B. Li, J.H. You, X.M. Zhang, Met. Mater. Int. 18, 679 (2012)

    Article  CAS  Google Scholar 

  37. ​D.-F. Li, D.-Z. Zhang, S.-D. Liu, Z.-J. Shan, X.-M. Zhang, Q. Wang, S.-Q. Han, T. Nonferr. Metal. Soc. 26, 1491 (2016)

    Article  CAS  Google Scholar 

  38. B. Zhao, Y. Lv, Y. Ding, L. Wang, W. Lu, Mater. Charact. 144, 77 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 51875583), the National Natural Science Foundation of China (Grant No. 52005518), the Guangxi Natural Science Foundation (Grant No. 2020GXNSFAA159156), and China Postdoctoral Science Foundation (Grant No. 2020M672510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailin He.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Yi, Y., Huang, S. et al. Grain Refinement and Thermal Stability of 2219 Aluminum Alloy in the Warm Deformation Process. Met. Mater. Int. 27, 4564–4576 (2021). https://doi.org/10.1007/s12540-020-00898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00898-0

Keywords

Navigation