Skip to main content
Log in

Effects of Addition of Si and Sb on the Microstructure and Thermoelectric Properties of GeTe

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of the addition of Si and Sb on the microstructure and thermoelectric properties of GeTe were investigated in this study. Pure GeTe showed a typical herringbone structure that consisted of regularly aligned domains with alternating bright and dark contrast areas. When Sb atoms were added to the GeTe, a clean herringbone structure was not formed. Instead, many sharp lines that are likely narrow domains were observed, and their formation can be ascribed to the cubic stabilizing nature of Sb in GeTe. The co-addition of Si and Sb to GeTe resulted in a breakdown of the herringbone structure and formation of SiGe and Si precipitates. Even though Si and Ge can form a complete solid solution, the solubility of Si in GeTe remained low. The addition of Sb to GeTe significantly reduced the electrical conductivity due to the aliovalent donor nature of Sb. Its thermal conductivity was also very low due to the mass fluctuation in the solid solution and narrow domain structure. Therefore, the best figure-of-merit (ZT) of 0.67 at 570 K was obtained. However, Ge1−x−ySbxSiyTe compounds with both Si and Sb addition showed a relatively low ZT value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  2. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Science 348, 109 (2015)

    Article  Google Scholar 

  3. C.-C. Lin, R. Lydia, J.H. Yun, H.S. Lee, J.S. Rhyee, Chem. Mater. 29, 5344 (2017)

    Article  Google Scholar 

  4. P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R 67, 19 (2010)

    Article  Google Scholar 

  5. A.S. Tazebay, S.-I. Yi, J.K. Lee, H. Kim, J.-H. Bahk, S.L. Kim, S.-D. Park, H.S. Lee, A. Shaouri, C. Yu, A.C.S. Appl, Mater. Interfaces 8, 7003 (2016)

    Article  Google Scholar 

  6. J.I. Jang, J.E. Lee, B.-S. Kim, S.-D. Park, H.S. Lee, RSC Adv. 7, 21671 (2017)

    Article  Google Scholar 

  7. S. Bae, S. Lee, H.-S. Sohn, H.S. Lee, Met. Mater. Int. 23, 1056 (2017)

    Article  Google Scholar 

  8. W.-J. Jung, I.-H. Kim, Met. Mater. Int. 24, 415 (2018)

    Article  Google Scholar 

  9. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009)

    Article  Google Scholar 

  10. D.K. Aswal, R. Basu, A. Singh, Energy Convers. Manag. 114, 50 (2016)

    Article  Google Scholar 

  11. D.L. Medlin, G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009)

    Article  Google Scholar 

  12. H. Mun, S.-M. Choi, K.H. Lee, S.W. Kim, Chemsuschem 8, 2312 (2015)

    Article  Google Scholar 

  13. Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 9, 1419 (2009)

    Article  Google Scholar 

  14. W. Kim, J. Mater. Chem. C 3, 10336 (2015)

    Article  Google Scholar 

  15. J.R. Szczech, J.M. Higgins, S. Jin, J. Mater. Chem. 21, 4037 (2011)

    Article  Google Scholar 

  16. K.H. Lee, J.-Y. Kim, S.-M. Choi, J. Korean Ceram. Soc. 52, 1 (2015)

    Article  Google Scholar 

  17. G. Tan, L.-D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016)

    Article  Google Scholar 

  18. J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012)

    Article  Google Scholar 

  19. G. Ding, J. Li, G. Gao, RSC Adv. 5, 91974 (2015)

    Article  Google Scholar 

  20. K. Nielsch, J. Bachmann, J. Kimling, H. Bottner, Adv. Energy Mater. 1, 713 (2011)

    Article  Google Scholar 

  21. S. Perumat, S. Roychowdhury, K. Biswas, J. Mater. Chem. C 4, 7520 (2016)

    Article  Google Scholar 

  22. E.M. Levin, B.A. Cook, J.L. Harringa, S.L. Bud’ko, R. Venkatasubramanian, K. Schmidt-Rohr, Adv. Funct. Mater. 21, 441 (2011)

    Article  Google Scholar 

  23. B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa, E.M. Levin, J. Appl. Phys. 101, 053715 (2007)

    Article  Google Scholar 

  24. T. Schroder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier, H. Wang, G.J. Snyder, O. Oeckler, Inorg. Chem. 53, 7722 (2014)

    Article  Google Scholar 

  25. A. Kumar, P.A. Vermeulen, B.J. Kooi, J. Rao, L. van Eijck, S. Schwarzmuller, O. Oeckler, G. Blake, Inorg. Chem. 56, 15091 (2017)

    Article  Google Scholar 

  26. E.M. Levin, S.L. Bud’ko, K. Schmidt-Rohr, Adv. Funct. Mater. 22, 2766 (2012)

    Article  Google Scholar 

  27. J.K. Lee, M.W. Oh, B.S. Kim, B.K. Min, H.W. Lee, S.D. Park, Electron. Mater. Lett. 10, 813 (2014)

    Article  Google Scholar 

  28. S. Perumal, S. Roychowdhury, D.S. Negi, R. Datta, K. Biswas, Chem. Mater. 27, 7171 (2015)

    Article  Google Scholar 

  29. J.B. Williams, D.T. Morelli, J. Mater. Chem. C 4, 10011 (2016)

    Article  Google Scholar 

  30. J.B. Williams, D.T. Morelli, J. Eletron. Mater. 46, 2652 (2017)

    Article  Google Scholar 

  31. S. Perumal, S. Roychowdhury, K. Biswas, Inorg. Chem. Front. 3, 125 (2016)

    Article  Google Scholar 

  32. D. Wu, L.-D. Zhao, S. Hao, Q. Jiang, F. Zheng, J.W. Doak, H. Wu, H. Chi, Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis, J. He, J. Am. Chem. Soc. 136, 11412 (2014)

    Article  Google Scholar 

  33. J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, Chem. Mater. 29, 605 (2017)

    Article  Google Scholar 

  34. H.S. Lee, B.-S. Kim, C.-W. Cho, M.-W. Oh, B.-K. Min, S.-D. Park, H.-W. Lee, Acta Mater. 91, 83 (2015)

    Article  Google Scholar 

  35. Y. Gelbstein, B. Dado, O. Ben-Yehuda, Y. Sadia, Z. Dashevsky, M.P. Dariel, Chem. Mater. 22, 1054 (2010)

    Article  Google Scholar 

  36. B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J.-F. Halet, F. Chevire, C. Boussard-Pledel, M.J. Reece, B. Bureau, J. Phys. Chem. C 122, 227 (2018)

    Article  Google Scholar 

  37. A.A. Babarenko, T.T. Tsu, E.M. Savitskii, ASM Alloy Phase Diagr. Center (2007). https://doi.org/10.1361/apd-ge-si-te-990498

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number 2015R1D1A1A02062093). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A41A1022260). This work was supported by a Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant from the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20162000000910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Seong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Lee, H.S. Effects of Addition of Si and Sb on the Microstructure and Thermoelectric Properties of GeTe. Met. Mater. Int. 25, 528–538 (2019). https://doi.org/10.1007/s12540-018-0194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0194-4

Keywords

Navigation