Skip to main content
Log in

Prediction model of austenite growth and the role of MnS inclusions in non-quenched and tempered steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The austenite growth behavior of non-quenched and tempered steels (casted by continuous casting and molding casting processes) was studied. The austenite grain size of steel B casted by continuous casting process is smaller than that of steel A casted by molding casting process at the same heating parameters. The abnormal austenite growth temperature of the steels A and B are 950 °C and 1000 °C, respectively. Based on the results, the models for the austenite grain growth below and above the abnormal austenite growth temperature of the investigated steels were established. The dispersedly distributed fine particles MnS in steel B is the key factor refining the austenite grain by pinning the migration of austenite grain boundary. The elongated inclusions MnS are ineffective in preventing the austenite grain growth at high heating temperature. For the non-quenched and tempered steel, the continuous casting process should be adopted and the inclusion MnS should be elliptical, smaller in size and distributed uniformly in order to refine the final microstructure and also improve the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. C. De Cooman and J. G. Speer, Fundamentals of Steel Product Physical Metallurgy, pp.295–296, AIST, Warrendale, USA (2012).

    Google Scholar 

  2. B. Dutta and C. M. Sellars, Mater. Sci. Tech. 3, 197 (1987).

    Article  Google Scholar 

  3. A. Bakkaloğlu, Mater. Lett. 56, 263 (2002).

    Article  Google Scholar 

  4. J. H. Ai, T. C. Zhao, H. J. Gao, Y. H. Hu, and X. S. Xie, J. Mater. Process. Tech. 160, 390 (2005).

    Article  Google Scholar 

  5. S. Shanmugam, R. D. K. Misra, T. Mannering, D. Pandab, and S. G. Jansto, Mat. Sci. Eng. A 437, 436 (2006).

    Article  Google Scholar 

  6. Y. Xu, D. Tang, Y. Song, and X. G. Pan, Mater. Design 36, 275 (2012).

    Article  Google Scholar 

  7. S. J. Lee, ISIJ Int. 53, 1902 (2013).

    Article  Google Scholar 

  8. S. J. Jiao, J. Penning, F. Leysen, Y. Houbaert, and E. Aernoudt, Steel Res. 71, 340 (2000).

    Article  Google Scholar 

  9. H. Pous-Romero, I. Lonardelli, D. Cogswell, and H. K. D. H. Bhadeshia, Mat. Sci. Eng. A 567, 72 (2013).

    Article  Google Scholar 

  10. L. Zhang and T. Kannengiesser, Mat. Sci. Eng. A 613, 326 (2014).

    Article  Google Scholar 

  11. N. Gao and T. N. Baker, ISIJ Int. 38, 744 (1998).

    Article  Google Scholar 

  12. R. Coladas, J. Masounave, G. Guérin, and J. P. Baïlon, Met. Sci. 11, 509 (1977).

    Article  Google Scholar 

  13. A. R. Mills, G. Thewlis, and J. A. Whiteman, Mater. Sci. Tech. 3, 1051 (1987).

    Article  Google Scholar 

  14. G. Thewlis, Mater. Sci. Tech. 10, 110 (1994).

    Article  Google Scholar 

  15. Ø. Grong, A. O. Kluken, H. K. Nylund, A. L. Dons, and J. Hjelen, Metall. Mater. Trans. A 26, 525 (1995).

    Article  Google Scholar 

  16. J. S. Byun, J. H. Shim, J. Y. Suh, Y. J. Oh, Y. W. Cho, D. N. Lee, et al. Mat. Sci. Eng. A 319, 326 (2001).

    Article  Google Scholar 

  17. W. J. Liu and J. J. Jonas, Metall. Trans. A 20, 1361 (1989).

    Article  Google Scholar 

  18. A. Ghosh, P. Modak, R. Dutta and D. Chakrabarti, Mat. Sci. Eng. A 654, 298 (2016).

    Article  Google Scholar 

  19. A. Ghosh, S. Sahoo, M. Ghosh, R. N. Ghosh, and D. Chakrabarti, Mat. Sci. Eng. A 613, 37 (2014).

    Article  Google Scholar 

  20. B. Jiang, L. Y. Zhou, X. L. Wen, C. L. Zhang, and Y. Z. Liu, Metall. Res. Technol. 111, 369 (2014).

    Article  Google Scholar 

  21. H. Hu and B. B. Rath, Metall. Trans. 1, 3181 (1970).

    Google Scholar 

  22. J. Maity and D. K. Mondai, J. Iron Steel Res. Int. 17, 38 (2010).

    Article  Google Scholar 

  23. S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, ISIJ Int. 44, 1230 (2004).

    Article  Google Scholar 

  24. L. N. Duan, J. M. Wang, Q. Y. Liu, X. J. Sun, and J. C. Cao, J. Iron Steel Res. Int. 17, 62 (2010).

    Article  Google Scholar 

  25. C. Yue, L. Zhang, S. Liao, and H. Gao, J. Mater. Eng. Perform. 19, 112 (2010).

    Article  Google Scholar 

  26. R. Staśko, H. Adrian, and A. Adrian, Mater. Charact. 56, 340 (2006).

    Article  Google Scholar 

  27. Z. Q. Dong, B. Jiang, Z. Mei, C. L. Zhang, L. Y. Zhou, and Y. Z. Liu, Steel Res. Int. 87, 745 (2016).

    Article  Google Scholar 

  28. P. A. Manohar, M. Ferry, and T. Chandra, ISIJ Int. 38, 913 (1998).

    Article  Google Scholar 

  29. C. L. Zhang, Z. Yang, J. H. Sun, H. D. Zhao, B. Y. Li, and Y. Z. Liu, Chinese J. Eng. 37, 175 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Wu, M., Sun, H. et al. Prediction model of austenite growth and the role of MnS inclusions in non-quenched and tempered steel. Met. Mater. Int. 24, 15–22 (2018). https://doi.org/10.1007/s12540-017-7012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7012-2

Keywords

Navigation