Skip to main content
Log in

Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, we employed a mechanical–alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. T. Rochman, K. Kawamoto, H. Sueyoshi, Y. Nakamura, and T. Nishida, J. Mater. Proc. Technol. 89, 367 (1999).

    Article  Google Scholar 

  2. J. G. Kim, J. I. Bang, Y. J. Kim, and Y. H. Park, Korean J. Met. Mater. 51, 857 (2013).

    Article  Google Scholar 

  3. D. M. Montasser, H. C. Yoon, and J. K. Lim, Met. Mater. Int. 12, 193 (2006).

    Article  Google Scholar 

  4. N. Chawla and X. Deng, Mater. Sci. Eng. A 390, 98 (2005).

    Article  Google Scholar 

  5. R. Narayanasamy, V. Anandakrishnan, and K. S. Pandey, Mater. Sci. Eng. A 517, 30 (2009).

    Article  Google Scholar 

  6. H. Khorsand, M. Ghaffari, and E. Ganjeh, Mater. Des. 55, 979 (2014).

    Article  Google Scholar 

  7. R. Yamanoglu, W. Bradbury, E. A. Olevsky, and R. M. German, Met. Mater. Int. 19, 1029 (2013).

    Article  Google Scholar 

  8. A. Salak, Ferrous Powder Metallurgy, p.397, Cambridge International Science Publishing, Cambridge (1997).

    Google Scholar 

  9. J. H. Ahn and H. S. Chung, Met. Mater. Int. 5, 295 (1999).

    Article  Google Scholar 

  10. F. Zhou, Y. T. Chou, and E. J. Lavernia, Mater. Trans. 42, 1566 (2001).

    Article  Google Scholar 

  11. G. Balachandran, M. L. Bhatia, N. B. Ballal, and P. K. Rao, ISIJ Int. 41, 1018 (2001).

    Article  Google Scholar 

  12. E. Salahinejad, R. Amini, and M. J. Hadianfard, Mater. Sci. Eng. A 527, 5522 (2010).

    Article  Google Scholar 

  13. C. Suryanarayana, Met. Mater. Int. 2, 195 (1996).

    Article  Google Scholar 

  14. Y. S. Kwon, H. T. Kim, G. V. Golubkova, A. A. Vlasov, and O. I. Lomovsky, Met. Mater. Int. 9, 433 (2005).

    Article  Google Scholar 

  15. T. Setsuo, T. Toshihiro, N. Koichi, H. Hideyuki, K. Kenji, and F. Yuichi, Met. Mater. Int. 10, 533 (2004).

    Article  Google Scholar 

  16. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. A 21, 2333 (1990).

    Article  Google Scholar 

  17. R. L. Orban, Rom. Pep. Phys. 56, 505 (2004).

    Google Scholar 

  18. M. H. Enayati and M. R. Bafandeh, J. Alloy. Compd. 454, 228 (2008).

    Article  Google Scholar 

  19. S. D. Kaloshkin, V. V. Tcherdyntsev, I. A. Tomilin, Y. V. Baldokhin, and E. V. Shelekhov, Phys. B 299, 236 (2001).

    Article  Google Scholar 

  20. N. T. Rochman, S. Kuramoto, R. Fujimoto, and H. Sueyoshi, J. Mater. Process. Tech. 138, 41 (2003).

    Article  Google Scholar 

  21. C. Suryanarayana, E. Ivanov, and V. Boldyrev, Mater. Sci. Eng. A 304, 151 (2001).

    Article  Google Scholar 

  22. Y. D. Kim, J. Y. Chung, J. Kim, and H. Jeon, Mater. Sci. Eng. A 291, 17 (2000).

    Article  Google Scholar 

  23. K. R. Kim, J. W. Ahn, G. H. Kim, J. H. Han, K. K. Cho, J. S. Roh, W. J. Kim, and H. S. Kim, Met. Mater. Int. 20, 1095 (2014).

    Article  Google Scholar 

  24. N. Hayashi, K. Hasezaki, and S. Takaki, Wear 242, 54 (2000).

    Article  Google Scholar 

  25. B. S. Murty and S. Ranganathan, Int. Mater. Rev. 43, 101 (1998).

    Article  Google Scholar 

  26. A. V. Krajnikov, V. V. Likutin, and G. E. Thompson, Appl. Surf. Sci. 210, 318 (2003).

    Article  Google Scholar 

  27. J. Hamill and C. Schade, N. Myers. Gas 80, 90 (2001).

    Google Scholar 

  28. D. Chasoglou, E. Hryha, M. Norell, and L. Nyborg, Appl. Surf. Sci. 268, 496 (2013).

    Article  Google Scholar 

  29. S. H. Luk, A. B. Davala, and H. M. Kopech, Adv. Powder. Metall. Part. Mater. 5, 17 (1996).

    Google Scholar 

  30. D. D. Shen, S. H. Song, Z. X. Yuan, and L. Q. Weng, Mater. Sci. Eng. A 394, 53 (2005).

    Article  Google Scholar 

  31. F. J. Vermolen and S. Zwaag, Mater. Sci. Eng. A 220, 140 (1996).

    Article  Google Scholar 

  32. J. Xu, Y. Zou, M. Fan, and L. Cheng, Int. J. Heat. Mass. Tran. 55, 2702 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjoo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jeong, G., Kang, S. et al. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process. Met. Mater. Int. 21, 1031–1037 (2015). https://doi.org/10.1007/s12540-015-5189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5189-9

Keywords

Navigation