Skip to main content
Log in

Effect of Cr and Zr on the grain structure of extruded EN AW 6082 alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of Cr and Zr addition on the coarse grain surface layer in EN AW 6082 tube extrusions were investigated. The decoration of the tube surfaces and the weld seams with coarse recrystallized grains reflects the strain as well as the temperature gradients that predominate across the section of the tubes during extrusion. The recrystallization resistance provided by Mn does not suffice to avoid the coarse surface grains. With structural features that are almost identical to those of the base 6082 alloy, the 6082 alloy with 0.06 wt% Zr also fails to offer any improvement. The coarse grain surface layer is much thinner and recrystallization is entirely avoided across the weld seams upon the addition of 0.15 wt% Cr. The superior recrystallization resistance of the revised alloy is attributed to the increase in the population of the Cr-rich Al(Cr,Mn,Fe)Si as well as (Al, Si)3Zr dispersoid particles. It is reasonable to conclude that the coaddition of Zr and Cr has a favourable impact on the resistance to recrystallization of EN AW 6082 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Parson, J. Hankin, K. Hicklin and C. Jowett, Proc. 7th International Aluminum Extrusion Technology Seminar, p. 1, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (2000).

    Google Scholar 

  2. J. Van Rijkom and W. S. Miller, Proc. 6th International Aluminum Extrusion Technology Seminar, p. 149, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (1996).

    Google Scholar 

  3. E. B. Bjornbakk, J. A. Saeter, and O. Reiso, Mater. Sci. Forum 396–402, 405 (2002).

    Article  Google Scholar 

  4. O. Reiso, Mater. Forum 28, 32 (2004).

    Google Scholar 

  5. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon (1996).

    Google Scholar 

  6. Y. Birol, J. Mater. Process Tech. 173, 84 (2006).

    Article  Google Scholar 

  7. T. Peterson, S. Abtahi, J. A. Saeter, T. Furu, H. E. Ekström, Proc. 9th Int. Conf. Aluminum Alloys (eds. B. C. Muddle, A. J. Morton, J. F. Nie), p.457, Institute of Materials Engineering, Brisbane, Queensland (2004).

  8. T. Furu and H. E. Vatne, Mater. Sci. Forum 331–337, 843 (2000).

    Article  Google Scholar 

  9. H. S. Yang, Proc. 7th International Aluminum Extrusion Technology Seminar, p.371, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (2000).

    Google Scholar 

  10. T. Sheppard, Proc. 6th International Aluminum Extrusion Technology Seminar, p. 163, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (1996).

    Google Scholar 

  11. R. Jeniski, B. Thanaboonsombut, and T. H. Sanders, Metall. Mater. Trans. 27A, 19 (1996).

    Article  Google Scholar 

  12. X. Duan and T. Sheppard, Hot Deformation of Aluminum Alloys (eds. Z. Jin, A. Beaudoin, T. A. Bieler, B. Radhakrishnan), p.99, TMS, San Diego, CA (2003).

  13. E. Sweet, S. K. Caraher, N. V. Danilova, and X. Zhang, Proc. 8th International Aluminum Extrusion Technology Seminar, p.115, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (2004).

    Google Scholar 

  14. W. Van Geertruyden, and W. Z. Misiolek, Proc. 8th International Aluminum Extrusion Technology Seminar, p.107, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (2004).

    Google Scholar 

  15. T. Sheppard, Extrusion of Aluminium Alloys, Kluwer Academic Publishers, USA (1999).

    Book  Google Scholar 

  16. B. Forbord, H. Hallem, N. Ryum, and K. Marthinsen, Mater. Sci. Eng. A 387–389, 936 (2004).

    Article  Google Scholar 

  17. J. Røyset, U. Tundal, S. R. Skjervold, G. Waterloo, C. Braathen, and O. Reiso, Mater. Forum. 28, 246 (2004).

    Google Scholar 

  18. B. Forbord, L Auran, W. Lefebvre, H. Hallem, and K. Marthinsen, Mater. Sci. Eng. 424, 174 (2006).

    Article  Google Scholar 

  19. Y. W. Riddle, H. Hallem, and N. Ryum, Mater. Sci. Forum 396–402, 563 (2002).

    Article  Google Scholar 

  20. Z. Jia, G. Hu, B. Forbord, and J. K. Solberg, Mater. Sci. Eng. A 444, 284 (2007).

    Article  Google Scholar 

  21. R. Guemini, A. Boubertakh, and G. W. Lorimer, J. Alloys Compds. 486, 451 (2009).

    Article  Google Scholar 

  22. M. Cabibbo and E. Evangelista, J. Mater. Sci. 41, 5329 (2006).

    Article  Google Scholar 

  23. P. K. Saha, Aluminum Extrusion Technology, ASM International, Metals Park, OH (2000).

    Google Scholar 

  24. W. H. van Geertruyden, H. M. Browne, W. Z. Misiolek, and P. T. Wang, Metal. Mater. Trans. A, 36, 1049 (2005).

    Article  Google Scholar 

  25. W. Libura and J. Zasadzinski, J. Mater. Process Tech. 34, 517 (1992).

    Article  Google Scholar 

  26. T. Sheppard and M. G. Tutcher, Metals Tech. 8, 319 (1981).

    Article  Google Scholar 

  27. H. Valberg and A. Groenseth, Proc. 5th International Aluminum Extusion Technology Seminar, p.337, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (1992).

    Google Scholar 

  28. S. R. Claves, W. Z. Misiolek, and D. B. Williams, Advances in the Metallurgy of Aluminum Alloys (ed. M. Tiryakioglu), pp.282–289, Indianapolis, IN (2001).

  29. R. Sikand, A. M. Kumar, A. K. Sachdev, A. A. Luo, V. Jain, and A. K. Gupta, J. Mater. Process. Tech. 209, 6010 (2009).

    Article  Google Scholar 

  30. Y. Birol, Scr. Mater. 59, 611 (2008).

    Article  Google Scholar 

  31. B. Forbord, O. Daaland, and E. Nes, Proc. 6th Int. Conf. On Aluminium Alloys, p.183, The Japan Institute of Light Metals, Toyohashi, Japan (1998).

    Google Scholar 

  32. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon (1996).

    Google Scholar 

  33. L. Lodgaard and N. Ryum, Mat. Sci. Eng. 283A, 144 (2000).

    Article  Google Scholar 

  34. P. R. Sperry, Proc. 3rd International Aluminum Extrusion Technology Seminar, p.21, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (1984).

    Google Scholar 

  35. N. Parson, S. Barker, A. Shalanski, and C. Jowett, Proc. 8th International Aluminum Extrusion Technology Seminar, p.11, Aluminum Extruders Council and The Aluminum Association, Chicago, Illinois, USA (2004).

    Google Scholar 

  36. Y. Birol, Eng. Failure Anal. 17, 1110 (2010).

    Article  Google Scholar 

  37. H. W. L. Philips, Annotated Equilibrium Diagrams of some Aluminium Alloy Systems, The Institute of metals (1959).

    Google Scholar 

  38. J. D. Robson and P. B. Prangnell, Acta Mater. 49, 599 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucel Birol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birol, Y. Effect of Cr and Zr on the grain structure of extruded EN AW 6082 alloy. Met. Mater. Int. 20, 727–732 (2014). https://doi.org/10.1007/s12540-014-4018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-4018-x

Keywords

Navigation