Skip to main content
Log in

Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds

  • Published:
Metals and Materials International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study investigates the microstructures and mechanical properties of 304 stainless steel at various vibration frequencies during simultaneous vibration welding. The experimental results demonstrated that simultaneous vibration welding could accelerate the nucleation and grain refinement of the microstructures. The effect of the grain refinement was more evident at the resonant frequency (375 Hz) and a minimum content of residual δ-ferrite (4.0%). The γ phase grew in the preferential orientation of the (111) direction with and without vibration. The full width at half maximum of the diffraction peak widened after the vibration, which was attributed to the grain refinement. The residual stress could be efficiently removed through simultaneous vibration welding when the amplitude of the vibration was increased. Furthermore, the lowest residual stress (139 MPa) was found when the vibration frequency was 375 Hz. The hardness and Young’s modulus exhibited slight increases with low and medium frequencies. The hardness values were increased by 7.6% and Young’s modulus was increased by 15% when the vibration frequency was resonant (375 Hz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. H. C. Chen, Structural Strength of Welding, 1st ed., p.200, Fu-Wen Book Company, Taiwan (1995).

    Google Scholar 

  2. H. S. Chou, Weld. Cutt. 2, 83 (1992).

    Google Scholar 

  3. Y. C. Lin, Mech. Techno. 48, 48 (1989).

    Google Scholar 

  4. E. Enke, Maschinenmarkt 48, 37 (1955).

    Google Scholar 

  5. A. G. Hebel, Jr., Metal Process. 128, 51 (1985).

    Google Scholar 

  6. C. A. Walker, A. J. Waddell, and D. J. Johnston, Process Inst. Mech. Eng. 209, 51 (1995).

    Article  Google Scholar 

  7. Meta-Lax, Meta-Lax Stress Relief Procedure, 1st ed., pp.1–120, Bonal Technologies, Inc., Royal Oak, Michigan (1997).

    Google Scholar 

  8. I. K. Lokshin, Dimensional Stabilization of Casting, 1st ed., pp.1–35, Russian Castings Production, Russia (1965).

    Google Scholar 

  9. C. A. Walker, A. J. Waddell, and D. J. Johnston, Process Inst. Mech. Eng. 209, 65 (1995).

    Google Scholar 

  10. R. Dawson and D. G. Moffat, J. Eng. Mater. Technol. 102, 169 (1980).

    Article  Google Scholar 

  11. M. C. Sun, Mater. Lett. 58, 299 (2004).

    Article  CAS  Google Scholar 

  12. D. Rao, D. Wang, L. Chen, and C. Ni, Int. J. Fatigue 29, 192 (2007).

    Article  CAS  Google Scholar 

  13. C. W. Kuo, C. M. Lin, G. H. Lai, Y. C. Chen, Y. T. Chang, and W. Wu, Mater. Trans. 48, 2319 (2007).

    Article  CAS  Google Scholar 

  14. C. W. Kuo, M. C. Chen, J. H. Chen, G. H. Lai, Y. T. Chang, Y. C. Chen, and W. Wu, Mater. Trans. 48, 2316 (2007).

    Article  CAS  Google Scholar 

  15. S. Weiss, S. Baker, and R. D. Das Gupta, Weld. J. 55, 47 (1976).

    Google Scholar 

  16. Q. Lu, L. Chen, and C. Ni, Mater. Sci. Eng. A 457, 246 (2007).

    Article  Google Scholar 

  17. B. Wei, Acta Metall. 40, 2739 (1992).

    Article  CAS  Google Scholar 

  18. C. W. Kuo, Ph. D. Thesis, pp.1–80, National Chung Hsing University, Taiwan (2008).

    Google Scholar 

  19. N. Suutala, T. Takalo, and T. Moisio, Metall. Mater. Trans. A 11, 717 (1980).

    Article  Google Scholar 

  20. H. P. Chou, Mech. J. 18, 155 (1992).

    Google Scholar 

  21. C. M. Wang, Materials Analysis, 1st ed., pp.1–230, Materials Research Society, Taiwan (1998).

    Google Scholar 

  22. E. Beraha and B. Shpigler, Color Metallography, 1st ed., pp.1–58, American Society for Metals, Metals Park, Ohio (1977).

    Google Scholar 

  23. M. E. Hilley, J. A. Larson, C. F. Jatczak, and R. E. Richlefs, Residual Stress Measurement by X-ray Diffraction, 1st ed., pp.1–30, SAE Information Report, Warrendate, Pennsylvania (1971).

    Google Scholar 

  24. G. F. Vander Voort, Metallography: Principles and Practice, 1st ed., pp.1–155, McGraw-Hill Book Co., New York, (1984).

    Google Scholar 

  25. D. Y. Lin, G. L. Liu, T. C. Chang, and H. C. Hsieh, J. Alloys Compd. 377, 150 (2004).

    Article  CAS  Google Scholar 

  26. S. E. Hsu and T. P. Wu, X-Ray Diffraction Principles and Materials Structural Analysis, 1st ed., pp.1–235, Materials Research Society Taiwan (1992).

    Google Scholar 

  27. G. P. Wonzney and G. R. Crawmer, Weld. J. 47, 411 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weite Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, CC., Lai, CH. & Wu, W. Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds. Met. Mater. Int. 19, 835–844 (2013). https://doi.org/10.1007/s12540-013-4026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4026-2

Key words

Profiles

  1. Weite Wu