Skip to main content
Log in

Constitutive analysis and processing map for hot working of a Ni-Cu alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The hot deformation behavior of a Ni-Cu alloy was studied using hot compression testing in the temperature range of 950 °C–1150 °C and at strain rates of 0.001 s−1-1 s−1. Flow curves at low strain rates, up to 0.01 s−1, were typical of DRX characterized by a single peak, while at higher strain rates, the typical form of a DRX flow curve was not observed. The power-law constitutive equation was used to correlate flow stress to strain rate and temperature, and the apparent activation energy of hot deformation was determined to be about 462.4 kJ/mol. The peak strain and stress were related to the Zener-Hollomon parameter and the modeling formula was proposed. The dependence of flow stress to the Z changed at ln Z=38.5, which was considered to be a critical condition for the change in the mechanism of dynamic recrystallization. The efficiency of power dissipation was determined to be between 10–35 percent at different deformation conditions. According to the dynamic material model, stable flow was predicted for the studied temperature and strain rate ranges. Highly serrated grain boundaries at low strain rates were considered to be a reason for the occurrence of continuous dynamic recrystallization. On the contrary, at high strain rates, equiaxed grain structure was attributed to the typical discontinuous dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Dey, R. Tewari, P. Rao, S. L. Wadekar, and P. Mukhopadhyay, Met. Mater. Trans. A 24, 2709 (1993).

    Google Scholar 

  2. G. T. Gray III, S. R. Chen, and K. S. Vecchio, Met. Mater. Trans. A 30, 1235 (1999).

    Article  Google Scholar 

  3. A. Dehghan-Manshadi, M. R. Barnett, and P. D. Hodgson, Met. Mater. Trans. A 39, 1359 (2008).

    Article  Google Scholar 

  4. G. R. Ebrahimi, H. Keshmiri, A. Momeni, and M. Mazinani, Mater. Sci. Eng. A 528, 7488 (2011).

    Article  CAS  Google Scholar 

  5. L. Gavard, F. Montheillet, and J. L. Coze, Mater. Trans. JIM 41, 113 (2000).

    CAS  Google Scholar 

  6. S. Mandal, P. V. Sivaprasad, R. Dube, and B. Raj, Mater. Sci. Forum 550, 601 (2007).

    Article  CAS  Google Scholar 

  7. A. Momeni, K. Dehghani, H. Keshmiri, and G. R. Ebrahimi, Mater. Sci. Eng. A 527, 1605 (2010).

    Article  Google Scholar 

  8. A. Momeni, K. Dehghani, G. R. Ebrahimi, and H. Keshmiri, Metall. Mater. Trans. A 41, 2898 (2010).

    Article  Google Scholar 

  9. A. Momeni, S. M. Abbasi, and A. Shokuhfar, Can. Metal. Quart. 4, 189 (2007).

    Google Scholar 

  10. E. V. Konopleva, M. Sauerborn, H. J. McQueen, N. D. Ryan, and R. G. Zaripova, Mater. Sci. Eng. A 234–236, 826 (1997).

    Google Scholar 

  11. H. J. McQueen, N. D. Ryan, R. Zaripova, and K. Farkhutdinov, Proc.37th Mechanical Working and Steel Processing, pp.883–888, Iron and Steel Inst. AIME, Warrendale (1996).

    Google Scholar 

  12. H. J. McQueen and W. Blum, Mater. Sci. Eng. A 290, 95 (2000).

    Article  Google Scholar 

  13. B. Verlinden, J. Driver, I. Samajdar, and R. D. Doherty, Thermo-Mechanical Processing of Metallic Materials, p. 60, Pergamon (2007).

  14. N. Srinivasan and Y. V. R. K. Prasad, Mater. Sci. Technol. 8, 206 (1992).

    Article  CAS  Google Scholar 

  15. Y. V. R. K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, pp.435–436, ASM International, Materials Park, OH (1997).

    Google Scholar 

  16. Q. Li, Y. B. Xu, Z. X. Lai, L.T. Shen, and Y. L. Bai, Mater. Sci. Eng. A 276, 250 (2000).

    Article  Google Scholar 

  17. A. Momeni and K. Dehghani, Met. Mater. Int. 16, 843 (2010).

    Article  CAS  Google Scholar 

  18. Y. V. R. K. Prasad, H. J. Gegel, S. M. Doraivelu, J. C. Malas, J. C. Morgan, L. A. Lark, and D. R. Barker, Metall. Trans. A 15, 1883 (1984).

    Article  Google Scholar 

  19. R. Ebrahimi and A. Najafizadeh, Int. J. ISSI 1, 1 (2004).

    Google Scholar 

  20. H. Ziegler, Progress in Solid Mechanics, (eds. I.N. Sneedon and R. Hill), pp.63–193, John Wiley and Sons, New York (1963).

    Google Scholar 

  21. F. J. Humphreys and M. Hatherly, Recrystallisation and Related Annealing Phenomena, 2nd Ed., pp.418–421, Elsevier Ltd., London (2004).

    Google Scholar 

  22. P. Cizek and B. P. Wynne, Mater. Sci. Eng. A 230, 88 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi, G.R., Momeni, A., Abbasi, S.M. et al. Constitutive analysis and processing map for hot working of a Ni-Cu alloy. Met. Mater. Int. 19, 11–17 (2013). https://doi.org/10.1007/s12540-013-1003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-1003-8

Key words

Navigation