Skip to main content
Log in

Improvement of slurry erosion resistance of martensite/ferrite duplex stainless steel by hot rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Test samples of martensite/ferrite duplex stainless steels (M/Fss) were prepared using thermal-mechanical processes and their slurry erosion behaviors were systematically studied. Test results show that hot rolling is an attractive process for improving erosion resistance. This improvement is more evident at higher impinging angles and larger reduction ratios. The thermal-mechanical-treated samples exhibit higher slurry erosion resistance for all impinging angles compared to that obtained by conventional quenching treatment without rolling. The variation tendency of the erosion rate versus the impinging angle for samples rolled with different degrees of reduction is similar in that the erosion rate initially increases and then decreases as the impinging angles increase from 15° to 90°, reaching a maximum at approximately 30°. After impingement erosion, the surface morphologies of the samples exhibit many long furrows and ridges at a low impinging angle of 30°. At a high impinging angle of 90°, the samples exhibit a worn surface with abundant overlapping and irregular concavities. The surface hardness of the samples after impingement erosion increases as the impinging angles and reduction ratios increase due to the enhanced effects of both work hardening and the formation of straininduced martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Petersen, and D. Rodrian, Int. J. Fatigue 30, 339 (2008).

    Article  CAS  MATH  Google Scholar 

  2. A. F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez, J. Nucl. Mater. 329–333, 252 (2004).

    Article  CAS  Google Scholar 

  3. C. Petersen, J. Nucl. Mater. 500–504, 307 (2002).

    Google Scholar 

  4. A. F. Armas, M. Avalos, I. Alvarez-Armas, C. Petersen, and R. Schmitt, J. Nucl. Mater. 258–263, 1204 (1998).

    Article  Google Scholar 

  5. J. G. Parr and A. Hanson, An Introduction to Stainless Steel, p. 32, ASM, Metals Park, OH (1986).

    Google Scholar 

  6. I. Finnie, Wear 3, 87 (1960).

    Article  Google Scholar 

  7. J. G. A. Bitter, Wear 6, 5 (1963).

    Article  Google Scholar 

  8. S. Jahanmir, Wear 61, 309 (1980).

    Article  Google Scholar 

  9. J. M. Robinson, and M. P. Shaw, Int. Mater. Rev. 39, 113 (1994).

    CAS  Google Scholar 

  10. A. A. C. Recco, D. López, A. F. Bevilacqua, F. da Silva, and A. P. Tschiptschin, Surf. Coat. Technol. 202, 993 (2007).

    Article  CAS  Google Scholar 

  11. J. F. Santa, J. C. Baena, and A. Toro, Wear 263, 258 (2007).

    Article  CAS  Google Scholar 

  12. S. I. Shim, Y. S. Park, S. T. Kim, and C. B. Song, Met. Mater. Int. 8, 301 (2002).

    Article  CAS  Google Scholar 

  13. G. T. Burstein and K. Sasaki, Wear 240, 80 (2000).

    Article  CAS  Google Scholar 

  14. A. Toro, A. Sinatora, D. K. Tanaka, and A. P. Tschiptschin, Wear 251, 1257 (2001).

    Article  Google Scholar 

  15. D. C. Wen, ISIJ Int. 46, 728 (2006).

    Article  CAS  Google Scholar 

  16. K. W. Andrews, JISI 203, 721 (1965).

    CAS  Google Scholar 

  17. A. W. Ruff and L. K. Ives, Wear 35, 195 (1975).

    Article  Google Scholar 

  18. F. B. Pickering, Physical Metallurgy and the Design of Steels, p. 258, Applied Science Publishers LTD, London (1978).

    Google Scholar 

  19. B. V. N. Rao and G. Thomas, Metall. Trans. A 11, 441 (1980).

    Article  Google Scholar 

  20. S. Barnard, G. D. W. Smith, M. Sarikaya, and G. Thomas, Scripta met. 15, 387 (1981).

    Article  CAS  Google Scholar 

  21. B. Miao, D. O. Northwood, L. C. Lim, and M. O. Lai, Mater. Sci. Eng. A 171, 21 (1993).

    Article  Google Scholar 

  22. H. Y. Teng, C. H. Hsu, S. C. Chiu, and D. C. Wen, Mater. Trans. 44, 1480 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Cherng Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, DC. Improvement of slurry erosion resistance of martensite/ferrite duplex stainless steel by hot rolling. Met. Mater. Int. 16, 13–19 (2010). https://doi.org/10.1007/s12540-010-0013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-0013-z

Keywords

Navigation