Skip to main content
Log in

CD47Binder: Identify CD47 Binding Peptides by Combining Next-Generation Phage Display Data and Multiple Peptide Descriptors

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

CD47/SIRPα pathway is a new breakthrough in the field of tumor immunity after PD-1/PD-L1. While current monoclonal antibody therapies targeting CD47/SIRPα have demonstrated some anti-tumor effectiveness, there are several inherent limitations associated with these formulations. In the paper, we developed a predictive model that combines next-generation phage display (NGPD) and traditional machine learning methods to distinguish CD47 binding peptides. First, we utilized NGPD biopanning technology to screen CD47 binding peptides. Second, ten traditional machine learning methods based on multiple peptide descriptors and three deep learning methods were used to build computational models for identifying CD47 binding peptides. Finally, we proposed an integrated model based on support vector machine. During the five-fold cross-validation, the integrated predictor demonstrated specificity, accuracy, and sensitivity of 0.755, 0.764, and 0.772, respectively. Furthermore, an online bioinformatics tool called CD47Binder has been developed for the integrated predictor. This tool is readily accessible on http://i.uestc.edu.cn/CD47Binder/cgi-bin/CD47Binder.pl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the raw data required for the research can be obtained through supplementary materials or CD47Binder website.

References

  1. Barclay AN, Van den Berg TK (2014) The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50. https://doi.org/10.1146/annurev-immunol-032713-120142

    Article  CAS  PubMed  Google Scholar 

  2. Matlung HL, Szilagyi K, Barclay NA, van den Berg TK (2017) The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immunol Rev 276(1):145–164. https://doi.org/10.1111/imr.12527

    Article  CAS  PubMed  Google Scholar 

  3. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PO, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109(17):6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Veillette A, Chen J (2018) SIRPalpha-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 39(3):173–184. https://doi.org/10.1016/j.it.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Z, Sun H, Yu J, Tian W, Song Y (2021) Targeting CD47 for cancer immunotherapy. J Hematol Oncol 14(1):180. https://doi.org/10.1186/s13045-021-01197-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weiskopf K (2017) Cancer immunotherapy targeting the CD47/SIRPalpha axis. Eur J Cancer 76:100–109. https://doi.org/10.1016/j.ejca.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Fan J, Ju D (2018) Insights into CD47/SIRPalpha axis-targeting tumor immunotherapy. Antib Ther 1(2):37–42. https://doi.org/10.1093/abt/tby006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, Tran T, Lynn J, Chen JY, Volkmer JP, Agoram B, Huang J, Majeti R, Weissman IL, Takimoto CH, Chao MP, Smith SM (2018) CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s Lymphoma. N Engl J Med 379(18):1711–1721. https://doi.org/10.1056/NEJMoa1807315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D, Anwer F (2018) Blocking “don’t eat me” signal of CD47-SIRPalpha in hematological malignancies, an in-depth review. Blood Rev 32(6):480–489. https://doi.org/10.1016/j.blre.2018.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fishman JA, Hogan JI, Maus MV (2019) Inflammatory and infectious syndromes associated with cancer immunotherapies. Clin Infect Dis 69(6):909–920. https://doi.org/10.1093/cid/ciy1025

    Article  CAS  PubMed  Google Scholar 

  11. Krumpe LR, Mori T (2006) The use of phage-displayed peptide libraries to develop tumor-targeting drugs. Int J Pept Res Ther 12(1):79–91. https://doi.org/10.1007/s10989-005-9002-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saw PE, Song EW (2019) Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 10(11):787–807. https://doi.org/10.1007/s13238-019-0639-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matochko WL, Derda R (2015) Next-generation sequencing of phage-displayed peptide libraries. Methods Mol Biol 1248:249–266. https://doi.org/10.1007/978-1-4939-2020-4_17

    Article  CAS  PubMed  Google Scholar 

  14. He B, Chai G, Duan Y, Yan Z, Qiu L, Zhang H, Liu Z, He Q, Han K, Ru B, Guo FB, Ding H, Lin H, Wang X, Rao N, Zhou P, Huang J (2016) BDB: biopanning data bank. Nucleic Acids Res 44(D1):D1127–D1132. https://doi.org/10.1093/nar/gkv1100

    Article  CAS  PubMed  Google Scholar 

  15. He B, Jiang L, Duan Y, Chai G, Fang Y, Kang J, Yu M, Li N, Tang Z, Yao P, Wu P, Derda R, Huang J (2018) Biopanning data bank 2018: hugging next generation phage display. Database (Oxford). https://doi.org/10.1093/database/bay032

    Article  PubMed  PubMed Central  Google Scholar 

  16. He B, Dzisoo AM, Derda R, Huang J (2019) Development and application of computational methods in phage display technology. Curr Med Chem 26(42):7672–7693. https://doi.org/10.2174/0929867325666180629123117

    Article  CAS  PubMed  Google Scholar 

  17. Asar MC, Franco A, Soendergaard M (2020) Phage display selection, identification, and characterization of novel pancreatic cancer targeting peptides. Biomolecules 10(5):714. https://doi.org/10.3390/biom10050714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pleiko K, Posnograjeva K, Haugas M, Paiste P, Tobi A, Kurm K, Riekstina U, Teesalu T (2021) In vivo phage display: identification of organ-specific peptides using deep sequencing and differential profiling across tissues. Nucleic Acids Res 49(7):e38. https://doi.org/10.1093/nar/gkaa1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He B, Chen H, Li N, Huang J (2019) SAROTUP: a suite of tools for finding potential target-unrelated peptides from phage display data. Int J Biol Sci 15(7):1452–1459. https://doi.org/10.7150/ijbs.31957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He B, Li B, Chen X, Zhang Q, Lu C, Yang S, Long J, Ning L, Chen H, Huang J (2022) PDL1Binder: Identifying programmed cell death ligand 1 binding peptides by incorporating next-generation phage display data and different peptide descriptors. Front Microbiol 13:928774. https://doi.org/10.3389/fmicb.2022.928774

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ma Y, Guo Z, Xia B, Zhang Y, Liu X, Yu Y, Tang N, Tong X, Wang M, Ye X, Feng J, Chen Y, Wang J (2022) Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol 40(6):921–931. https://doi.org/10.1038/s41587-022-01226-0

    Article  CAS  PubMed  Google Scholar 

  22. Liu G, Zeng H, Mueller J, Carter B, Wang Z, Schilz J, Horny G, Birnbaum ME, Ewert S, Gifford DK (2020) Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics 36(7):2126–2133. https://doi.org/10.1093/bioinformatics/btz895

    Article  CAS  PubMed  Google Scholar 

  23. Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, Jenkins TP (2021) Animal immunization, in vitro display technologies, and machine learning for antibody discovery. Trends Biotechnol 39(12):1263–1273. https://doi.org/10.1016/j.tibtech.2021.03.003

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate illumina paired-end reAd mergeR. Bioinformatics 30(5):614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  PubMed  Google Scholar 

  25. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  26. Chen H, Lu F, Guo X, Pang Y, He C, Han S, Duan X, Chen H (2022) dimensional analysis of atypical functional connectivity of major depression disorder and bipolar disorder. Cereb Cortex 32(6):1307–1317. https://doi.org/10.1093/cercor/bhab296

    Article  PubMed  Google Scholar 

  27. Chen H, Long J, Yang S, He B (2021) Atypical functional covariance connectivity between gray and white matter in children with autism spectrum disorder. Autism Res 14(3):464–472. https://doi.org/10.1002/aur.2435

    Article  PubMed  Google Scholar 

  28. Long J, Lu F, Yang S, Zhang Q, Chen X, Pang Y, Wang M, He B, Liu H, Duan X, Chen H, Ye S, Chen H (2023) Different functional connectivity optimal frequency in autism compared with healthy controls and the relationship with social communication deficits: evidence from gene expression and behavior symptom analyses. Hum Brain Mapp 44(1):258–268. https://doi.org/10.1002/hbm.26011

    Article  PubMed  Google Scholar 

  29. Forman G (2002) Choose Your Words Carefully: An extensive empirical study of feature selection metrics for text classification. Principles of data mining and knowledge discovery. Springer Berlin Heidelberg, pp 150–162. https://doi.org/10.1007/3-540-45681-3_13

  30. Chen J, Guo M, Wang X, Liu B (2018) A comprehensive review and comparison of different computational methods for protein remote homology detection. Brief Bioinform 19(2):231–244. https://doi.org/10.1093/bib/bbw108

    Article  CAS  PubMed  Google Scholar 

  31. Lei Y, Liu H (2003) Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. Proceedings of the 20th international conference on machine learning (ICML-03) 2003: 856–863. https://dl.acm.org/doi/https://doi.org/10.5555/3041838.3041946

  32. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  PubMed  Google Scholar 

  33. Stigler SM (1989) Francis Galton’s account of the invention of correlation. Stat Sci 4(2):73–79. https://doi.org/10.1214/ss/1177012580

    Article  Google Scholar 

  34. Chen Z, Zhao P, Li C, Li F, Xiang D, Chen YZ, Akutsu T, Daly RJ, Webb GI, Zhao Q, Kurgan L, Song J (2021) iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Res 49(10):e60. https://doi.org/10.1093/nar/gkab122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  36. Loh WY (2011) Classification and regression trees. Wiley Interdiscip Rev: Data Min Knowl Discov 1(1):14–23. https://doi.org/10.1002/widm.8

    Article  Google Scholar 

  37. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  38. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185. https://doi.org/10.2307/2685209

    Article  Google Scholar 

  39. Bammann K (2010) Statistical models: theory and practice. Biometrics 62(3):943–943. https://doi.org/10.1111/j.1541-0420.2006.00588_4.x

    Article  Google Scholar 

  40. Rayens WS (2012) discriminant analysis and statistical pattern recognition. Technometrics. https://doi.org/10.1080/00401706.1993.10485331

    Article  Google Scholar 

  41. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Müller A, Nothman J, Louppe G, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É (2012) Scikit-learn: Machine Learning in Python. arXiv:1201.0490. https://doi.org/10.48550/arXiv.1201.0490

  42. Rennie J, Shih L, Teevan J, Karger D R (2003) Tackling the Poor Assumptions of Naïve Bayes Text Classifiers. Proceedings of the 20th international conference on machine learning (ICML-03). 2003: 616–623. https://doi.org/10.5555/3041838.3041916

  43. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232. https://doi.org/10.1214/aos/1013203451

    Article  Google Scholar 

  44. Sainath TN, Vinyals O, Senior A, Sak H (2015) Convolutional, long short-term memory, fully connected deep neural networks. IEEE international conference on acoustics, speech and signal processing (ICASSP). Ieee 2015:4580–4584. https://doi.org/10.1109/icassp.2015.7178838

    Article  Google Scholar 

  45. Johnson R, Tong Z (2017) Deep Pyramid Convolutional Neural Networks for Text Categorization. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) 2017: 562–570. https://doi.org/10.18653/v1/p17-1052

  46. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I J (2017) Attention Is All You Need. arXiv:1706.03762. https://doi.org/10.48550/arXiv.1706.03762

  47. He B, Huang J, Chen H (2019) PVsiRNAPred: Prediction of plant exclusive virus-derived small interfering RNAs by deep convolutional neural network. J Bioinform Comput Biol 17(6):1950039. https://doi.org/10.1142/S0219720019500392

    Article  CAS  PubMed  Google Scholar 

  48. He B, Kang J, Ru B, Ding H, Zhou P, Huang J (2016) SABinder: a web service for predicting streptavidin-binding peptides. Biomed Res Int 2016:9175143. https://doi.org/10.1155/2016/9175143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Venkatraman L, Tucker-Kellogg L (2013) The CD47-binding peptide of thrombospondin-1 induces defenestration of liver sinusoidal endothelial cells. Liver Int 33(9):1386–1397. https://doi.org/10.1111/liv.12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Wang Y, Hu J, Xu H (2021) An antitumor peptide RS17-targeted CD47, design, synthesis, and antitumor activity. Cancer Med 10(6):2125–2136. https://doi.org/10.1002/cam4.3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lagadec P, Dejoux O, Ticchioni M, Cottrez F, Johansen M, Brown EJ, Bernard A (2003) Involvement of a CD47-dependent pathway in platelet adhesion on inflamed vascular endothelium under flow. Blood 101(12):4836–4843. https://doi.org/10.1182/blood-2002-11-3483

    Article  CAS  PubMed  Google Scholar 

  52. Fujimoto TT, Katsutani S, Shimomura T, Fujimura K (2003) Thrombospondin-bound integrin-associated protein (CD47) physically and functionally modifies integrin alphaIIbbeta3 by its extracellular domain. J Biol Chem 278(29):26655–26665. https://doi.org/10.1074/jbc.M302194200

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Sun Y, Zhou X, Chen C, Jiao L, Li W, Gou S, Li Y, Du J, Chen G, Zhai W, Wu Y, Qi Y, Gao Y (2020) CD47/SIRPalpha blocking peptide identification and synergistic effect with irradiation for cancer immunotherapy. J Immunother Cancer 8(2):e000905. https://doi.org/10.1136/jitc-2020-000905

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ham JH, Lee DD, Saul LK (2003) Learning High Dimensional Correspondences from Low Dimensional Manifolds. https://repository.upenn.edu/ese_papers/134/

  55. Li PC, Xu SH (2005) Support vector machine and kernel function characteristic analysis in pattern recognition. Computer Engineering and Design 26(2): 302–304. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJSJ200502008.htm

  56. Yuen B, Hoang MT, Dong X, Lu T (2020) Universal Activation Function For Machine Learning. arXiv:2011.03842. https://doi.org/10.48550/arXiv.2011.03842

  57. Jeong E, Jeong JS, Kim S, Yu GI, Chun BG (2018) Improving the Expressiveness of Deep Learning Frameworks with Recursion. Proceedings of the Thirteenth EuroSys Conference 2018:1–13. https://doi.org/10.1145/3190508.3190530

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant numbers: 62261006, 62263003, 62071099, and 61901130), Science and Technology Department of Guizhou Province (Grant numbers: [2020]1Y407, ZK [2022]-general-056, and ZK [2022]-general-038), Health Commission of Guizhou Province (Grant Number: gzwkj2022-473) and Guizhou University (Grant number: [2020]5). At the same time, thanks for the computing support of the State Key Laboratory of Public Big Data, Guizhou University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HC, JH and BH; Methodology, HC, JH and BH; Software, BL, HC, JH and BH; Validation, BL; Formal analysis, BL; Investigation, BL; Resources, BL; Data curation, BL; Writing – original draft, BL; Writing – review & editing, BL, HC and BH; Visualization, BL; Supervision, HC, JH and BH; Project administration, HC, JH and BH; Funding acquisition, HC, JH and BH All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Heng Chen, Jian Huang or Bifang He.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, H., Huang, J. et al. CD47Binder: Identify CD47 Binding Peptides by Combining Next-Generation Phage Display Data and Multiple Peptide Descriptors. Interdiscip Sci Comput Life Sci 15, 578–589 (2023). https://doi.org/10.1007/s12539-023-00575-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00575-x

Keywords

Navigation