Skip to main content
Log in

Association Between Cortisol to DHEA-s Ratio and Sickness Absence in Japanese Male Workers

  • Published:
International Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the association between serum levels of cortisol and dehydroepiandrosterone sulfate (DHEA-s) and sickness absence over 2 years in Japanese male workers.

Method

A baseline survey including questions about health behavior, along with blood sampling for cortisol and DHEA-s, was conducted in 2009. In total, 429 men (mean ± SD age, 52.9 ± 8.6 years) from whom blood samples were collected at baseline were followed until December 31, 2011. The hazard ratios (HR) and 95% confidence intervals (CI) for sickness absence were calculated using a Cox proportional hazard model, adjusted for potential confounders.

Results

Among 35 workers who took sickness absences, 31 had physical illness. A high cortisol to DHEA-s ratio increased the risk of sickness absence (crude HR = 2.68, 95% CI 1.12–6.41; adjusted HR = 3.33, 95% CI 1.35–8.20). The cortisol to DHEA-s ratio was linearly associated with an increased risk of sickness absence (p for trend < .050). Single effects of cortisol and DHEA-s levels were not associated with sickness absences. This trend did not change when limited to absences resulting from physical illness.

Conclusion

Hormonal conditions related to the hypothalamus–pituitary–adrenocortical axis and adrenal function should be considered when predicting sickness absence. The cortisol to DHEA-s ratio may be more informative than single effects of cortisol and DHEA-s levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mommersteeg PM, Heijnen CJ, Kavelaars A, van Doornen LJ. Immune and endocrine function in burnout syndrome. Psychosom Med. 2006;68(6):879–86. https://doi.org/10.1097/01.psy.0000239247.47581.0c.

    Article  PubMed  CAS  Google Scholar 

  2. Sonnenschein M, Mommersteeg PM, Houtveen JH, Sorbi MJ, Schaufeli WB, van Doornen LJ. Exhaustion and endocrine functioning in clinical burnout: an in-depth study using the experience sampling method. Biol Psychol. 2007;75(2):176–84. https://doi.org/10.1016/j.biopsycho.2007.02.001.

    Article  PubMed  Google Scholar 

  3. Phillips AC, Carroll D, Gale CR, Lord JM, Arlt W, Batty GD. Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study. Eur J Endocrinol. 2010;163(2):285–92. https://doi.org/10.1530/EJE-10-0299.

    Article  PubMed  CAS  Google Scholar 

  4. Chida Y, Steptoe A. Cortisol awakening response and psychosocial factors: a systematic review and meta-analysis. Biol Psychol. 2009;80(3):265–78. https://doi.org/10.1016/j.biopsycho.2008.10.004.

    Article  PubMed  Google Scholar 

  5. Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25–36. https://doi.org/10.1016/j.psyneuen.2016.11.036.

    Article  PubMed  CAS  Google Scholar 

  6. Kamba A, Daimon M, Murakami H, Otaka H, Matsuki K, Sato E, et al. Association between higher serum cortisol levels and decreased insulin secretion in a general population. PLoS One. 2016;11(11):e0166077. https://doi.org/10.1371/journal.pone.0166077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fabre B, Grosman H, Gonzalez D, Machulsky NF, Repetto EM, Mesch V, et al. Prostate cancer, high cortisol levels and complex hormonal interaction. Asian Pac J Cancer Prev. 2016;17(7):3167–71.

    PubMed  Google Scholar 

  8. Lennartsson AK, Theorell T, Kushnir MM, Jonsdottir IH. Changes in DHEA-s levels during the first year of treatment in patients with clinical burnout are related to health development. Biol Psychol. 2016;120:28–34. https://doi.org/10.1016/j.biopsycho.2016.08.003.

    Article  PubMed  Google Scholar 

  9. Vermeulen A. Dehydroepiandrosterone sulfate and aging. Ann N Y Acad Sci. 1995;774(1 Dehydroepiand):121–7. https://doi.org/10.1111/j.1749-6632.1995.tb17376.x.

    Article  PubMed  CAS  Google Scholar 

  10. Wemm S, Koone T, Blough ER, Mewaldt S, Bardi M. The role of DHEA in relation to problem solving and academic performance. Biol Psychol. 2010;85(1):53–61. https://doi.org/10.1016/j.biopsycho.2010.05.003.

    Article  PubMed  Google Scholar 

  11. Veronese N, Trevisan C, De Rui M, Bolzetta F, Maggi S, Zambon S, et al. Serum dehydroepiandrosterone sulfate and risk for type 2 diabetes in older men and women: the Pro.V.A Study. Can J Diabetes. 2016;40(2):158–63. https://doi.org/10.1016/j.jcjd.2015.09.013.

    Article  PubMed  Google Scholar 

  12. Tivesten Å, Vandenput L, Carlzon D, Nilsson M, Karlsson MK, Ljunggren Ö, et al. Dehydroepiandrosterone and its sulfate predict the 5-year risk of coronary heart disease events in elderly men. J Am Coll Cardiol. 2014;64(17):1801–10. https://doi.org/10.1016/j.jacc.2014.05.076.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrari E, Casarotti D, Muzzoni B, Albertelli N, Cravello L, Fioravanti M, et al. Age-related changes of the adrenal secretory pattern: possible role in pathological brain aging. Brain Res Brain Res Rev. 2001;37(1-3):294–300. https://doi.org/10.1016/S0165-0173(01)00133-3.

    Article  PubMed  CAS  Google Scholar 

  14. Sollberger S, Ehlert U. How to use and interpret hormone ratios. Psychoneuroendocrinology. 2016;63:385–97. https://doi.org/10.1016/j.psyneuen.2015.09.031.

    Article  PubMed  CAS  Google Scholar 

  15. Young AH, Gallagher P, Porter RJ. Elevation of the cortisol-dehydroepiandrosterone ratio in drug-free depressed patients. Am J Psychiatry. 2002;159(7):1237–9. https://doi.org/10.1176/appi.ajp.159.7.1237.

    Article  PubMed  Google Scholar 

  16. Radloff LS. The CES-D scale. A self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1(3):385–401. https://doi.org/10.1177/014662167700100306.

    Article  Google Scholar 

  17. Shima S, Shikano T, Kitamura T, Asai M. New self-rating scale for depression. Seishin Igaku. 1985;27:717–23. [in Japanese]

    Google Scholar 

  18. Hänsel A, Hong S, Cámara RJ, von Känel R. Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neurosci Biobehav Rev. 2010;35(1):115–21. https://doi.org/10.1016/j.neubiorev.2009.12.012. Review.

    Article  PubMed  Google Scholar 

  19. Lennartsson AK, Kushnir MM, Bergquist J, Jonsdottir IH. DHEA and DHEA-S response to acute psychosocial stress in healthy men and women. Biol Psychol. 2012;90(2):143–9. https://doi.org/10.1016/j.biopsycho.2012.03.003.

    Article  PubMed  Google Scholar 

  20. Lennartsson AK, Theorell T, Kushnir MM, Bergquist J, Jonsdottir IH. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress. Psychoneuroendocrinology. 2013;38(9):1650–7. https://doi.org/10.1016/j.psyneuen.2013.01.010.

    Article  PubMed  CAS  Google Scholar 

  21. Buford TW, Willoughby DS. Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab. 2008;33(3):429–33. https://doi.org/10.1139/H08-013.

    Article  PubMed  CAS  Google Scholar 

  22. Henderson M, Harvey SB, Overland S, Mykletun A, Hotopf M. Work and common psychiatric disorders. J R Soc Med. 2011;104(5):198–207. https://doi.org/10.1258/jrsm.2011.100231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lee DY, Kim E, Choi MH. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep. 2015;48(4):209–16. https://doi.org/10.5483/BMBRep.2015.48.4.275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lemmens SG, Born JM, Martens EA, Martens MJ, Westerterp-Plantenga MS. Influence of consumption of a high-protein vs. high-carbohydrate meal on the physiological cortisol and psychological mood response in men and women. PLoS One. 2011;6(2):e16826. https://doi.org/10.1371/journal.pone.0016826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chrousos, Vgontzas AN, Kritikou I. HPA Axis and Sleep. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. https://www.ncbi.nlm.nih.gov/books/NBK279071/ Accessed 18 Jan 2017.

Download references

Acknowledgments

This study was supported by the Japan Society for the Promotion of Science KAKENHI (grant number: 21700681) to Kumi Hirokawa.

Funding

This study was funded by the Japan Society for the Promotion of Science KAKENHI (grant number: 21700681).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumi Hirokawa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirokawa, K., Fujii, Y., Taniguchi, T. et al. Association Between Cortisol to DHEA-s Ratio and Sickness Absence in Japanese Male Workers. Int.J. Behav. Med. 25, 362–367 (2018). https://doi.org/10.1007/s12529-017-9700-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12529-017-9700-1

Keywords

Navigation