Skip to main content

Advertisement

Log in

The Relation of Light-to-Moderate Alcohol Consumption to Glucose Metabolism and Insulin Resistance in Nondiabetic Adults: the Moderating Effects of Depressive Symptom Severity, Adiposity, and Sex

  • Published:
International Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

Purpose

We examined the relation of alcohol consumption to glucose metabolism and insulin resistance (IR) as a function of depressive symptoms, adiposity, and sex.

Method

Healthy adults (aged 18–65 years) provided fasting blood samples and information on lifestyle factors. Alcohol intake was categorized as never, infrequent (1–3 drinks/month), occasional (1–7 drinks/week), and regular (≥2 drinks/day) drinkers. The Beck Depression Inventory (BDI) was used to assess symptom severity. Primary outcomes were fasting insulin, glucose, and IR assessed by the homeostasis model assessment (HOMA).

Results

In univariate analysis, alcohol consumption was negatively associated with HOMA-IR (p = 0.03), insulin (p = 0.007), and body mass index (BMI) (p = 0.04), but not with glucose or BDI. Adjusting for potential confounders including BMI, alcohol consumption was associated with HOMA-IR (p = 0.01) and insulin (p = 0.009) as a function of BDI and sex. For women with minimal depressive symptoms, light-to-moderate alcohol consumption was associated with lower HOMA-IR and insulin. Alcohol consumption was not associated with metabolic markers in women with higher depressive symptoms and in men. In analysis using BMI as a continuous moderator, alcohol consumption was only associated with insulin (p = 0.004). Post-hoc comparisons between BMI groups (<25 vs ≥25 kg/m2) revealed that light-to-moderate alcohol consumption was associated with lower insulin but only in subjects with BMI ≥ 25 kg/m2.

Conclusions

The benefits of light-to-moderate alcohol consumption on fasting insulin and IR are sex dimorphic and appear to be independently moderated by adiposity and depressive symptom severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Due to the small number of regular drinkers (7.6%, n = 16 out of 213), we combined the occasional and regular drinking categories to form one category representative of light-to-moderate drinking. Before establishing this combined category, we examined whether the two categories, occasional and regular, differed on demographics, anthropomorphics, and depressive symptom severity. As expected, occasional drinkers (n = 70) reported fewer drinks per week (median = 0.43, IQR 0.15–1.0) relative to regular (n = 16) drinkers (median = 1.43, IQR 0.86–2.14). No subject in the regular consumption group reported drinking more than 3 drinks/day; thus, heavy drinkers (≥5 drinks/day) were no represented in this sample. Comparisons between occasional and regular drinkers did not reveal significant differences in age (F = 2.86, ns), BMI (F = 1.15, ns), educational status (F = 0.49, ns), and BDI (F = 0.14, ns). In addition, the distribution of men and women did not differ by alcohol group χ 2(1) = 0.46, ns. Using the same set of covariates as in the primary analysis (e.g., age, BMI, race, sex, educational status, and physical activity), we examined differences between occasional and regular drinkers on log(HOMA-IR), insulin, and glucose. Results showed no group differences for log(HOMA-IR) (F = 0.32, ns), insulin (F = 0.21, ns), and glucose (F = 2.29, ns).

  2. For women, we also examined whether the BDI total score was positively associated with log (HOMA-IR) and insulin within each alcohol group. Previous studies have suggested that increases in BDI are associated with increases in insulin resistance and, to a lesser extent, increases in fasting insulin in nondiabetic adults [34, 58]. Results of analysis revealed that increasing log(HOMA-IR) was significantly associated with increasing BDI (b = 0.30, t = 2.56, p = 0.02) for nondrinkers, but not for infrequent (b = −0.70, t = −0.99, ns) and regular/occasional (b = 0.14, t = 1.38, ns) drinkers. Similarly, insulin values were significantly associated with total BDI score (b = 5.20, t = 2.46, p = 0.02) for nondrinkers, but not for infrequent (b = −0.15, t = −0.19, ns) or regular/occasional (b = 0.92, t = 0.86, ns) drinkers. Lastly, when alcohol group was used as a covariate, results of multivariate liner regression revealed positive associations between log(HOMA-IR) and BDI (b = 0.12, t = 1.93, p = 0.057) and between insulin and BDI (b = 1.85, t = 2.19, p = 0.03) for never drinkers. In drinkers, no associations between BDI and either log(HOMA-IR) or fasting insulin were observed. Combined, these findings suggest that higher levels of depressive symptom severity are associated with greater IR and fasting insulin and that these associations are significant only in women who abstain from alcohol. While we do not recommend that woman with elevated symptoms of depression begin drinking alcohol, the findings underscore the complex nature of the relationship among sex, alcohol consumption, glucose metabolism, IR, and depressive symptom severity.

References

  1. Baliunas DO, Taylor BJ, Irving H, et al. Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2009;32(11):2123–32. doi:10.2337/dc09-0227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Athyros VG, Liberopoulos EN, Mikhailidis DP, et al. Association of drinking pattern and alcohol beverage type with the prevalence of metabolic syndrome, diabetes, coronary heart disease, stroke, and peripheral arterial disease in a Mediterranean cohort. Angiology. 2008;58(6):689–97. doi:10.1177/0003319707306146.

    Article  Google Scholar 

  3. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011;342. doi:10.1136/bmj.d671.

  4. Carlsson S, Hammar N, Grill V. Alcohol consumption and type 2 diabetes meta-analysis of epidemiological studies indicates a U-shaped relationship. Diabetologia. 2005;48(6):1051–4. doi:10.1007/s00125-005-1768-5.

    Article  CAS  PubMed  Google Scholar 

  5. Knott C, Bell S, Britton A. Alcohol consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of more than 1.9 million individuals from 38 observational studies. Diabetes Care. 2015;38(9):1804–12. doi:10.2337/dc15-0710.

    Article  CAS  PubMed  Google Scholar 

  6. Klatsky AL. Alcohol, cardiovascular diseases and diabetes mellitus. Pharmacol Res. 2007;55(3):237–47. doi:10.1016/j.phrs.2007.01.011.

    Article  CAS  PubMed  Google Scholar 

  7. Koppes LLJ, Dekker JM, Hendriks HFJ, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care. 2005;28(3):719–25. doi:10.2337/diacare.28.3.719.

    Article  PubMed  Google Scholar 

  8. Bonnet F, Disse E, Laville M, et al. Moderate alcohol consumption is associated with improved insulin sensitivity, reduced basal insulin secretion rate and lower fasting glucagon concentration in healthy women. Diabetologia. 2012;55(12):3228–37. doi:10.1007/s00125-012-2701-3.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor B, Irving HM, Baliunas D, et al. Alcohol and hypertension: gender differences in dose-response relationships determined through systematic review and meta-analysis. Addiction. 2009;104(12):1981–90. doi:10.1111/j.1360-0443.2009.02694.x.

    Article  PubMed  Google Scholar 

  10. Schrieks IC, Heil ALJ, Hendriks HFJ, Mukamal KJ, Beulens JWJ. The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care. 2015;38(4):723–32. doi:10.2337/dc14-1556.

    CAS  PubMed  Google Scholar 

  11. Metcalf PA, Scragg RK, Jackson R. Light to moderate alcohol consumption is protective for type 2 diabetes mellitus in normal weight and overweight individuals but not the obese. J Obes. 2014;2014:634587. doi:10.1155/2014/634587.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bell RA, Mayer-Davis EJ, Martin MA, D'Agostino RB Jr, Haffner SM. Associations between alcohol consumption and insulin sensitivity and cardiovascular disease risk factors: the Insulin Resistance and Atherosclerosis Study. Diabetes Care. 2000;23(11):1630–6.

    Article  CAS  PubMed  Google Scholar 

  13. Vidot DC, Stoutenberg M, Gellman M, et al. Alcohol consumption and metabolic syndrome among Hispanics/Latinos: the Hispanic community health study/study of Latinos. Metab Syndr Relat Disord. 2016;14(7):354–62. doi:10.1089/met.2015.0171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yokoyama H. Beneficial effects of ethanol consumption on insulin resistance are only applicable to subjects without obesity or insulin resistance; drinking is not necessarily a remedy for metabolic syndrome. Int J Environ Res Public Health. 2011;8(7):3019–31. doi:10.3390/ijerph8073019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kroenke CH, Chu N-F, Rifai N, et al. A cross-sectional study of alcohol consumption patterns and biologic markers of glycemic controla among 459 women. Diabetes Care. 2003;26(7):1971–8. doi:10.2337/diacare.26.7.1971.

    Article  PubMed  Google Scholar 

  16. Suarez EC, Schramm-Sapyta NL, Vann Hawkins T, Erkanli A. Depression inhibits the anti-inflammatory effects of leisure time physical activity and light to moderate alcohol consumption. Brain Behav Immun. 2013;32:144–52. doi:10.1016/j.bbi.2013.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suarez E, Saab P, Llabre M, Kuhn C, Zimmerman E. Ethnicity, gender, and age effects on adrenoceptors and physiological responses to emotional stress. Psychophysiology. 2004;41(3):450–60.

    Article  PubMed  Google Scholar 

  18. Yeung EH, Zhang C, Mumford SL, et al. Longitudinal study of insulin resistance and sex hormones over the menstrual cycle: the BioCycle Study. J Clin Endocrinol Metab. 2010;95(12):5435–42. doi:10.1210/jc.2010-0702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beck AT, Steer RA, Garbin MG. Psychometric properties of the Beck Depression Inventory: twenty-five years of evaluation. Clin Psychol Rev. 1988;8:77–100.

    Article  Google Scholar 

  20. Albert MA, Glynn RJ, Ridker PM. Alcohol consumption and plasma concentration of C-reactive protein. Circulation. 2003;107:443–7.

    Article  PubMed  Google Scholar 

  21. Movva R, Figueredo VM. Alcohol and the heart: to abstain or not to abstain? Int J Cardiol. 2013;164(3):267–76. doi:http://dx.doi.org/10.1016/j.ijcard.2012.01.030

    Article  PubMed  Google Scholar 

  22. Pai JK, Hankinson SE, Thadhani R, Rifai N, Pischon T, Rimm EB. Moderate alcohol consumption and lower levels of inflammatory markers in US men and women. Atherosclerosis. 2006;186(1):113–20. doi:10.1016/j.atherosclerosis.2005.06.037.

    Article  CAS  PubMed  Google Scholar 

  23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–95.

    Article  PubMed  Google Scholar 

  25. Aiken LS, West SG. Multiple regression: testing and interpreting interactions. Thousand Oaks: Sage; 1991.

    Google Scholar 

  26. Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA. 2002;287(19):2559–62. doi:10.1001/jama.287.19.2559.

    Article  CAS  PubMed  Google Scholar 

  27. Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS, Phillips DI. Alcohol consumption and insulin resistance in young adults. Eur J Clin Investig. 2000;30(4):297–301.

    Article  CAS  Google Scholar 

  28. Lazarus R, Sparrow D, Weiss ST. Alcohol intake and insulin levels: the Normative Aging Study. Am J Epidemiology. 1997;145(10):909–16.

    Article  CAS  Google Scholar 

  29. Johnston E, Johnson S, McLeod P, Johnston M. The relation of body mass index to depressive symptoms. Can J Public Health. 2004;95(3):179–83.

    PubMed  Google Scholar 

  30. Noh J-W, Kwon YD, Park J, Kim J. Body mass index and depressive symptoms in middle aged and older adults. BMC Public Health. 2015;15(1):310. doi:10.1186/s12889-015-1663-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greenfield JR, Samaras K, Jenkins AB, Kelly PJ, Spector TD, Campbell LV. Moderate alcohol consumption, estrogen replacement therapy, and physical activity are associated with increased insulin sensitivity. Is abdominal adiposity the mediator? 2003;26(10):2734–2740. doi:10.2337/diacare.26.10.2734.

  32. Kozela M, Bobak M, Besala A, et al. The association of depressive symptoms with cardiovascular and all-cause mortality in Central and Eastern Europe: prospective results of the HAPIEE study. Eur J Prevent Cardiol. 2016. doi:10.1177/2047487316649493.

  33. Carnethon MR, Biggs ML, Barzilay JI, et al. Longitudinal association between depressive symptoms and incident type 2 diabetes mellitus in older adults: the cardiovascular health study. Arch Intern Med. 2007;167:802–7.

    Article  PubMed  Google Scholar 

  34. Khambaty T, Stewart JC, Muldoon MF, Kamarck TW. Depressive symptom clusters as predictors of 6-year increases in insulin resistance: data from the Pittsburgh healthy heart project. Psychosom Med. 2014;76(5):363–9. doi:10.1097/psy.0000000000000063.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Joosten MM, Grobbee DE, van der A DL, Verschuren WM, Hendriks HF, Beulens JW. Combined effect of alcohol consumption and lifestyle behaviors on risk of type 2 diabetes. Am J Clin Nutr. 2010;91(6):1777–83. doi:10.3945/ajcn.2010.29170.

    Article  CAS  PubMed  Google Scholar 

  36. Wakabayashi I, Groschner K. Modification of the association between alcohol drinking and non-HDL cholesterol by gender. Clin Chim Acta. 2009;404(2):154–9. doi:10.1016/j.cca.2009.03.047.

    Article  CAS  PubMed  Google Scholar 

  37. Cooper DC, Trivedi RB, Nelson KM, et al. Sex differences in associations of depressive symptoms with cardiovascular risk factors and metabolic syndrome among African Americans. Cardiovascular Psychiatry and Neurology. 2013;2013:10. doi:10.1155/2013/979185.

    Article  Google Scholar 

  38. Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9. doi:10.1111/j.1559-4572.2008.00030.x.

    Article  PubMed  Google Scholar 

  39. Tschritter O, Fritsche A, Thamer C, et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes. 2003;52(2):239–43. doi:10.2337/diabetes.52.2.239.

    Article  CAS  PubMed  Google Scholar 

  40. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Investig. 2006;116(7):1784–92. doi:10.1172/JCI29126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohman-Hanson RA, Cree-Green M, Kelsey MM, et al. Ethnic and sex differences in adiponectin: from childhood to adulthood. J Clin Endocrinol Metab. 2016;101(12):4808–15. doi:10.1210/jc.2016-1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bottner A, Kratzsch J, Muller G, et al. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J Clin Endocrinol Metab. 2004;89(8):4053–61. doi:10.1210/jc.2004-0303.

    Article  PubMed  Google Scholar 

  43. Carvalho AF, Rocha DQC, McIntyre RS, et al. Adipokines as emerging depression biomarkers: a systematic review and meta-analysis. J Psychiatr Res. 2014;59:28–37. doi:10.1016/j.jpsychires.2014.08.002.

    Article  PubMed  Google Scholar 

  44. Wang Q, Zhu XC, Liu H, Ran MS, Fang DZ. A longitudinal study of the association of adiponectin gene rs1501299 with depression in Chinese Han adolescents after Wenchuan earthquake. J Affect Disord. 2015;175:86–91. doi:10.1016/j.jad.2014.12.056.

    Article  CAS  PubMed  Google Scholar 

  45. Fredriksson J, Carlsson E, Orho-Melander M, Groop L, Ridderstråle M. A polymorphism in the adiponectin gene influences adiponectin expression levels in visceral fat in obese subjects. Int J Obes. 2006;30(2):226–32. doi:10.1038/sj.ijo.0803138.

    Article  CAS  Google Scholar 

  46. Thamer C, Haap M, Fritsche A, Haering H, Stumvoll M. Relationship between moderate alcohol consumption and adiponectin and insulin sensitivity in a large heterogeneous population. Diabetes Care. 2004;27(5):1240. doi:10.2337/diacare.27.5.1240.

    Article  PubMed  Google Scholar 

  47. Bell S, Britton A. The role of alcohol consumption in regulating circulating levels of adiponectin: a prospective cohort study. The Journal of Clinical Endocrinology & Metabolism. 2015;100(7):2763–8. doi:10.1210/jc.2015-1845.

    Article  CAS  Google Scholar 

  48. Makita S, Abiko A, Nagai M, et al. Influence of daily alcohol consumption on serum adiponectin levels in men. Metabolism—Clinical and Experimental. 62(3):411–6. doi:10.1016/j.metabol.2012.09.003.

  49. McLaughlin T, Allison G, Abbasi F, Lamendola C, Reaven G. Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metabolism. 2004;53(4):495–9. doi:10.1016/j.metabol.2003.10.032.

    Article  CAS  PubMed  Google Scholar 

  50. Wells JCK, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006;91(7):612–7. doi:10.1136/adc.2005.085522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Graham K, Massak A, Demers A, Rehm J. Does the association between alcohol consumption and depression depend on how they are measured? Alcohol Clin Exp Res. 2007;31(1):78–88. doi:10.1111/j.1530-0277.2006.00274.x.

    Article  PubMed  Google Scholar 

  52. Hunt M, Auriemma J, Cashaw ACA. Self-report bias and underreporting of depression on the BDI-II. J Pers Assess. 2003;80(1):26–30. doi:10.1207/S15327752JPA8001_10.

    Article  PubMed  Google Scholar 

  53. Mayer EJ, Newman B, Quesenberry CP Jr, Friedman GD, Selby JV. Alcohol consumption and insulin concentrations. Role of insulin in associations of alcohol intake with high-density lipoprotein cholesterol and triglycerides. Circulation. 1993;88(5 Pt 1):2190–7.

    Article  CAS  PubMed  Google Scholar 

  54. Holbrook TL, Barrett-Connor E, Wingard DL. A prospective population-based study of alcohol use and non-insulin-dependent diabetes mellitus. Am J Epidemiol. 1990;132(5):902–9. doi:10.1093/oxfordjournals.aje.a115733.

    Article  CAS  PubMed  Google Scholar 

  55. Stampfer MJ, Colditz GA, Willett WC, et al. A prospective study of moderate alcohol drinking and risk of diabetes in women. Am J Epidemiol. 1988;128(3):549–58. doi:10.1093/oxfordjournals.aje.a115002.

    Article  CAS  PubMed  Google Scholar 

  56. Schmitz N, Deschenes SS, Burns RJ, et al. Depression and risk of type 2 diabetes: the potential role of metabolic factors. Mol Psychiatry. 2016. doi:10.1038/mp.2016.7.

  57. DiMatteo M, Lepper HS, Croghan TW. Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Arch Intern Med. 2000;160(14):2101–7. doi:10.1001/archinte.160.14.2101.

    Article  CAS  PubMed  Google Scholar 

  58. Suarez EC. Sex differences in the relation of depressive symptoms, hostility, and anger expression to indices of glucose metabolism in nondiabetic adults. Health Psychol. 2006;25(4):484–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Suarez.

Ethics declarations

Funding

This work was supported by a grant from National Heart, Lung, and Blood Institute (NHLBI) HL67459 to Dr. Suarez and by a Clinical Sciences Research and Development (CSR&D) Research Career Scientist Award (#11S-RCS-009) to Dr. Beckham.

Conflict of Interest

All authors declare that they have no conflict of interests.

Human and animal rights

All procedures performed in this study were conducted in accordance with the ethical standards of the Duke University Health System Institutional Review Board (IRB) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

All participants gave written consent prior to study participation and data collection. The Duke University Health System Institutional Review Board (IRB) approved the consent process. We thank those who kindly volunteered to participate in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suarez, E.C., Beckham, J.C. & Green, K.T. The Relation of Light-to-Moderate Alcohol Consumption to Glucose Metabolism and Insulin Resistance in Nondiabetic Adults: the Moderating Effects of Depressive Symptom Severity, Adiposity, and Sex. Int.J. Behav. Med. 24, 927–936 (2017). https://doi.org/10.1007/s12529-017-9652-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12529-017-9652-5

Keywords

Navigation