Skip to main content
Log in

Freely Available Datasets Able to Simulate the Snowmelt Runoff in Himalayan Basin with the Aid of Temperature Index Modelling

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The present study estimates snowmelt runoff in the Bhagirathi basin of the river Ganga using the snowmelt runoff model (SRM) with the freely available input datasets. A temperature index model WinSRM is used to calculate the discharge from simulated snowmelt runoff during 2010–2014. The variables of the model include precipitation, rainfall, air temperature, and snow cover area (SCA). Air temperature and precipitation are obtained from the MERRA-2 reanalysis and Indian Meteorological Department (IMD) gridded data, respectively, over the delineated zones of the basin. The SCA is estimated using the Moderate Resolution Imaging Spectroradiometer (MODIS) snow product: MOD10A2 data with an 8-day period or composite SCA of 500-m spatial resolution interpolated to a daily scale. Five-year simulation results show that the discharge maintains a high flow in monsoon with a mean value of 375.50 m3/s. However, the model underestimates the average runoff volume by 7% in 2013 and overestimates it by 10% in 2010. The observed snow volume difference (Dv%) is − 10.32 and + 4.36 for the years 2010 and 2012, respectively. Measured and simulated discharge rates are found to be in agreement with correlation coefficients in the range of 0.81–0.84 during the 2010–2014 period. Simulated discharge rates showed strong variability with typically highest values from mid-June to August (e.g. 3400.31 m3/s in 2013). The model also showed some additional peaks in September and June as seen in measurements during 2010, 2013, and 2014. Average runoff rates during the monsoon season (June–August) were estimated to be in the range of 478.69–689.23 m3/s during the study period. This study reveals the contiguity of the model results as compared with the real-time observations and indicates potential for improvement with the usage of satellite-derived inputs within the deviation limits. The findings from the study have implications for better monitoring of glacier health, snowmelt runoff, and natural resource management in the Himalayas, where meteorological and hydrological observations are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability statement

Not applicable.

References

  • Abudu, S., Sheng, Z., Cui, C., Saydi, M., Sabzi, H. Z., & King, J. P. (2016). Integration of aspect and slope in snowmelt runoff modeling in a mountain watershed. Water Science and Engineering, 9(4), 265–273. https://doi.org/10.1016/j.wse.2016.07.002

    Article  Google Scholar 

  • Aggarwal, S. P., Thakur, P. K., Nikam, B. R., & Garg, V. (2014). Integrated approach for snowmelt run-off estimation using temperature index model, remote sensing, and GIS. Current Science, 106(3), 397–407. https://doi.org/10.18520/cs/v106/i3/397-407

    Article  Google Scholar 

  • Anderson, E. A. (1973). National Weather Service River forecast system: Snow accumulation and ablation model (Vol. 17). US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service.

  • Ångström, A. (1933). On the dependence of ablation on air temperature, radiation and wind. Geografiska Annaler, 15(4), 264–295.

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Kumar, N., Srivastava, S., Pottakkal, J. G., & Chevallier, P. (2019). Snow and ice melt contributions in a highly glacierized catchment of Chhota Shigri Glacier (India)over the last five decades. Journal of Hydrology, 574, 760–773. https://doi.org/10.1016/j.jhydrol.2019.04.075

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., Chaujar, R. K., & Kulshreshtha, S. C. (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57(203), 543–556. https://doi.org/10.3189/002214311796905604

    Article  Google Scholar 

  • Bormann, K. J., Evans, J. P., & McCabe, M. F. (2014). Constraining snowmelt in a temperature-index model using simulated snow densities. Journal of Hydrology, 517, 652–667. https://doi.org/10.1016/j.jhydrol.2014.05.073

    Article  Google Scholar 

  • Bhadra, B. K., Arun, G., Salunkhe, S. S., & Jeyaseelan, A. T. (2015). Snowmelt runoff modelling and its implications in hydropower potential assessment in Dhauliganga catchment of Pithoragarh District, Uttarakhand.

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2008). Mass balance studies of the Dokriani Glacier from 1992 to 2000, Garhwal Himalaya, India. Bulletin Glacier Research, 25, 9–17.

    Google Scholar 

  • Dozier, J. (1989). Spectral signature of alpine snow cover from the Landsat thematic mapper. Remote Sensing of Environment, 28(C), 9–22. https://doi.org/10.1016/0034-4257(89)90101-6

    Article  Google Scholar 

  • Fierz, C., Riber, P., Adams, E. E., Curran, A. R., Föhn, P. M. B., Lehning, M., & Plüss, C. (2003). Evaluation of snow-surface energy balance models in alpine terrain. Journal of Hydrology, 282(1–4), 76–94. https://doi.org/10.1016/S0022-1694(03)00255-5

    Article  Google Scholar 

  • Fily, M., Bourdelles, B., Dedieu, J. P., & Sergent, C. (1997). Comparison of In situ and Landsat thematic mapper derive snow grain characteristics in the Alps. Remote Sensing of Environment, 59(3), 452–460. https://doi.org/10.1016/S0034-4257(96)00113-7

    Article  Google Scholar 

  • Hall, D.K., G.A. Riggs, V.V. Salomonson and G.R. Scharfen, 2001: "Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Snow-Cover Maps," Proceedings of the IAHS Hydrology 2000 Conference, 2–8 April 2000, Santa Fe, NM, pp. 55–60.

  • Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snowcover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54, 127–140.

    Article  Google Scholar 

  • Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1–4), 104–115. https://doi.org/10.1016/S0022-1694(03)00257-9

    Article  Google Scholar 

  • Jain, S. K., Goswami, A., & Saraf, A. K. (2010a). Snowmelt runoff modelling in a Himalayan basin with the aid of satellite data. International Journal of Remote Sensing, 31(24), 6603–6618. https://doi.org/10.1080/01431160903433893

    Article  Google Scholar 

  • Jain, S. K., Goswami, A., & Saraf, A. K. (2010b). Assessment of Snowmelt runoff using remote sensing and effect of climate change on runoff. Water Resources Management, 24, 1763–1777. https://doi.org/10.1007/s11269-009-9523-1

    Article  Google Scholar 

  • Joshi, R., Kumar, K., Pandit, J., & Palni, L. M. S. (2015). Variations in the seasonal snow cover area (SCA) for Upper Bhagirathi Basin, India. In R. Joshi, K. Kumar, & L. Palni (Eds.), Dynamics of climate change and water resources of Northwestern Himalaya. Society of earth scientists series. Springer. https://doi.org/10.1007/978-3-319-13743-8_2

    Chapter  Google Scholar 

  • Kang, D. H. (2005). Distributed snowmelt modeling with GIS and Casc2d at California Gulch, Colorado (Doctoral dissertation, Colorado State University).

  • Khadka, D., Babel, M. S., Shrestha, S., & Tripathi, N. K. (2014). Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. Journal of Hydrology, 511, 49–60. https://doi.org/10.1016/j.jhydrol.2014.01.005

    Article  Google Scholar 

  • Kokhanovsky, A. A., Rozanov, V. V., Aoki, T., Odermatt, D., Brockmann, C., Krüger, O., Bouvet, M., Drusch, M., & Hori, M. (2011). Sizing snow grains using backscattered solar light. International Journal of Remote Sensing, 32, 6975–7008. https://doi.org/10.1080/01431161.2011.560621

    Article  Google Scholar 

  • Kulshrestha, S., Ramsankaran, R. A. A. J., Kumar, A., Arora, M., & Senthil Kumar, A. R. (2018). Investigating the performance of snowmelt runoff model using temporally varying near-surface lapse rate in Western Himalayas. Current Science, 114(4), 808–813. https://doi.org/10.18520/cs/v114/i04/808-813

    Article  Google Scholar 

  • Kult, J., Choi, W., & Choi, J. (2014). Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography, 55, 30–38. https://doi.org/10.1016/j.apgeog.2014.08.011

    Article  Google Scholar 

  • Kumar, D., Singh, A. K., Taloor, A. K., & Singh, D. S. (2021). Recessional pattern of Thelu and Swetvarn glaciers between 1968 and 2019, Bhagirathi basin, Garhwal Himalaya, India. Quaternary International, 575–576, 227–235. https://doi.org/10.1016/j.quaint.2020.05.017

    Article  Google Scholar 

  • Li, H. Y., & Wang, J. (2008). The snowmelt runoff model applied in the upper Heihe River Basin. Journal of Glaciology and Geocryology, 30(5), 769–775.

    Google Scholar 

  • Li, X. G., & Williams, M. W. (2008). Snowmelt runoff modeling in an arid mountain watershed, Tarim Basin, China. Hydrological Processes, 22(19), 3931–3940.

    Article  Google Scholar 

  • Liu, J. F., Yang, J. P., Chen, R. S., & Yang, Y. (2006). The simulation of snowmelt runoff model in the Dongkemadi River Basin, headwater of the Yangtze River. Acta Geographica Sinica, 61(11), 1149–1159.

    Google Scholar 

  • Liu, W., Li, Z. L., & Li, K. B. (2007). Snowmelt runoff modeling in Tashikuergan River Basin, Xinjiang, China. Technical Supervision in Water Resources, 3, 43–46.

    Google Scholar 

  • Ma, H., & Cheng, G. D. (2003). A test of snowmelt runoff model (SRM) for the Gongnaisi river basin in the Western Tianshan Mountains, China. Chinese Science Bulletin, 48(20), 2253–2259.

    Article  Google Scholar 

  • Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y., & Diffenbaugh, N. S. (2015). The potential for snow to supply human water demand in the present and future. Environmental Research Letters. https://doi.org/10.1088/1748-9326/10/11/114016

    Article  Google Scholar 

  • Marsh, C. B., Pomeroy, J. W., & Spiteri, R. J. (2012). Implications of mountain shading on calculating energy for snowmelt using unstructured triangular meshes. Hydrological Processes, 26(12), 1767–1778. https://doi.org/10.1002/hyp.9329

    Article  Google Scholar 

  • Martinec, J., & Rango, A. (1986). Parameter values for snowmelt runoff modelling. Journal of Hydrology, 84(3–4), 197–219. https://doi.org/10.1016/0022-1694(86)90123-X

    Article  Google Scholar 

  • Martinec J, Rango A, Roberts R. 1994. Snowmelt runoff model (SRM)user’s manual. In Geographica Bernensia, Baumgartner MF (ed). Department of Geography, University of Bern: Bern, Switzerland.

  • Martinec, J. S., Rango, A., & Roberts, R. (2008). Snowmelt runoff model (SRM), user’s manual (updated edition 2008, windows version 1.11). USDA Jornada Experimental Range, New Mexico State University.

  • Narama, A. J., & MacClume, K. L. (2010). Feasibility report for a Himalayan climate change impact and adaptation assessment. Centre for International Climate and Environment Research, Oslo and Institute for Social and Environment Transition.

  • Narama, C., Kääb, A., Duishonakunov, M., & Abdrakhmatov, K. (2010). Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~ 1970), Landsat (~ 2000), and ALOS (~ 2007) satellite data. Global and Planetary Change, 71(1–2), 42–54. https://doi.org/10.1016/j.gloplacha.2009.08.002

    Article  Google Scholar 

  • Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., & Green, R. O. (2003). Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment, 85(1), 64–77. https://doi.org/10.1016/S0034-4257(02)00187-6

    Article  Google Scholar 

  • Pangali Sharma, T. P., Zhang, J., Khanal, N. R., Prodhan, F. A., Paudel, B., Shi, L., & Nepal, N. (2020). Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal. Remote Sensing, 12, 1951. https://doi.org/10.3390/rs12121951

    Article  Google Scholar 

  • Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., & Mukhopadhyay, B. (2014). Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 1–18.

    Article  Google Scholar 

  • Prasad, V. H., & Roy, P. S. (2005). Estimation of snowmelt runoff in Beas Basin, India. Geocarto International, 20(2), 41–47. https://doi.org/10.1080/10106040508542344

    Article  Google Scholar 

  • Quick, M. C., & Pipes, A. (1995). UBC watershed model manual. University of British Columbia. Version 4.0.

  • Rango, A. (1985). Assessment of remote sensing input to hydrologic models. Water Resources Bulletin, 21, 423–432.

    Article  Google Scholar 

  • RGI Consortium. (2017). Randolph glacier inventory—A Dataset of global glacier outlines, version 6 [indicate subset used], Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/4m1f-gd79

  • Shrestha, A. B., Agrawal, N. K., Alfthan, B., Bajracharya, S. R., Maréchal, J., & Oort, B. V. (2015). The Himalayan Climate and Water Atlas: Impact of climate change on water resources in five of Asia’s major river basins. In: ICIMOD, GRID-Arendal and CICERO: ICIMOD, GRID-Arendal and CICERO (pp. 1–96).

  • Singh, M. K., Thayyen, R. J., & Jain, S. K. (2021). Snow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm. Geocarto International, 36(20), 2279–2302. https://doi.org/10.1080/10106049.2019.1704069

    Article  Google Scholar 

  • Singh, S. K., Kulkarni, A. V., & Chaudhary, B. S. (2010). Hyperspectral analysis of snow reflectance to understand the effects of contamination and grain size. Annals of Glaciology, 51(54), 83–88. https://doi.org/10.3189/172756410791386535

    Article  Google Scholar 

  • Sood, V., Gupta, S., Gusain, H. S., Singh, S., & Taloor, A. K. (2021). Topographic controls on subpixel change detection in western Himalayas. Remote Sensing Applications: Society and Environment, 21, 100465. https://doi.org/10.1016/j.rsase.2021.100465. ISSN 2352-9385.

    Article  Google Scholar 

  • Tayal Senzeba, K., Bhadra, A., & Bandyopadhyay, A. (2015). Snowmelt runoff modelling in data scarce Nuranang catchment of eastern Himalayan region. Remote Sensing Applications: Society and Environment, 1, 20–35. https://doi.org/10.1016/j.rsase.2015.06.001

    Article  Google Scholar 

  • Todd Walter, M., Brooks, E. S., McCool, D. K., King, L. G., Molnau, M., & Boll, J. (2005). Process-based snowmelt modeling: Does it require more input data than temperature-index modeling. Journal of Hydrology, 300(1–4), 65–75. https://doi.org/10.1016/j.jhydrol.2004.05.002

    Article  Google Scholar 

  • Thayyen, R. J., & Gergan, J. T. (2010). Role of glaciers in watershed hydrology: A preliminary study of a ‘Himalayan catchment.’ The Cryosphere, 4(1), 115–128.

    Article  Google Scholar 

  • Tulu, M. D. (2005). SRTM DEM suitability in runoff studies (Master of Science thesis, International Institute for Geo-information and Earth Observation, The Netherlands).

  • Khajuria, V., Kumar, M., Gunasekaran, A., & Rautela, K. S. (2022). Snowmelt runoff estimation Using Combined Terra-Aqua MODIS Improved Snow product in Western Himalayan River Basin via degree day modelling approach. Environmental Challenges, 8, 100585. https://doi.org/10.1016/j.envc.2022.100585

    Article  Google Scholar 

  • Wang, J., Liu, Y., & Li, Y. (2009). Application of SRM to flood forecast and forewarning of Manasi River Basin in Spring. Remote Sensing Technology and Application, 24(4), 456–461.

    Google Scholar 

  • Wulf, H., Bookhagen, B., & Scherler, D. (2016). Differentiating between rain, snow, and glacier contributions to river discharge in the western Himalaya using remote-sensing data and distributed hydrological modeling. Advances in Water Resources, 88, 152–169. https://doi.org/10.1016/j.advwatres.2015.12.004

    Article  Google Scholar 

  • Zhang, Y. C., Li, B. L., Bao, A. M., Zhou, C. H., Chen, X., & Zhang, X.̄ R. (2006). Simulation of snowmelt runoff model in the Kaidu River Basin. Science China Earth Sciences, 36(s2), 24–32.

    Google Scholar 

  • Zhang, G., Xie, H., Yao, T., Li, H., & Duan, S. (2014). Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM). Journal of Hydrology, 519(PA), 976–987. https://doi.org/10.1016/j.jhydrol.2014.08.022

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for improving this work. We also thank to NIH, Roorkee, India, and THDC Rishikesh for providing the field data used in the research work.

Funding

The author(s) received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Khajuria.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, A., Khajuria, V., Thakur, P.K. et al. Freely Available Datasets Able to Simulate the Snowmelt Runoff in Himalayan Basin with the Aid of Temperature Index Modelling. J Indian Soc Remote Sens 51, 1197–1212 (2023). https://doi.org/10.1007/s12524-023-01690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01690-4

Keywords

Profiles

  1. Varun Khajuria
  2. Sanjeev Kimothi