Skip to main content
Log in

Google Earth Engine-Based Identification of Flood Extent and Flood-Affected Paddy Rice Fields Using Sentinel-2 MSI and Sentinel-1 SAR Data in Bihar State, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Flood is the major cause of fatalities associated with natural disasters in the world. In India especially in the state of Bihar, where about half of the area (North Bihar) gets flooded every year due to the overflow of major rivers during the rainy season. Which severely affects human lives, properties, agricultural production, farmers and their livelihood. Usually, the basins of the Kosi and Gandak rivers are known for their worst affects in Bihar. Synthetic aperture radar (SAR) is widely used for robust monitoring of flood events due to its ability to image the surface of the earth in all weather conditions. However, limited studies are available on flood patterns of Bihar and their impact on agriculture. Here, we investigated the flood extents and affected paddy rice fields for Bihar during the months of June–October (2020) using all accessible Sentinel-1 SAR and Sentinel-2 MSI images with additional supporting datasets available on the Google Earth Engine. The study showed that a large portion of Bihar (7019 km2) was submerged during monsoon season. The floodwater remains in the agricultural fields for 50 to 65 days causing severe damage to the Kharif crops, mainly rice. The extreme effect of flood was seen in agricultural lands (11.23% of the total area) and populations (15.56% of the total population) in Bihar. Satellite-based identification of flood progression and affected rice fields can be helpful for decision-makers at the time of disaster to prioritize relief and rescue operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

Data can be made available through user request.

Code Availability

GEE Code can be made available through user request.

References

Download references

Acknowledgements

The authors would like to thank European Space Agency (ESA) for providing the SAR data in Google Earth Engine for hassle-free cloud data processing with the API code.

Funding

Research work is not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Kumar.

Ethics declarations

Conflict of interest

Authors declare no financial and competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Karwariya, S.K. & Kumar, R. Google Earth Engine-Based Identification of Flood Extent and Flood-Affected Paddy Rice Fields Using Sentinel-2 MSI and Sentinel-1 SAR Data in Bihar State, India. J Indian Soc Remote Sens 50, 791–803 (2022). https://doi.org/10.1007/s12524-021-01487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01487-3

Keywords