Skip to main content
Log in

Cotton Yield Estimation Using Phenological Metrics Derived from Long-Term MODIS Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Crop phenology plays a vital role in crop productivity and has been emphasized as the key indicator of crop growth stages. Time-series 16 day composite of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data from 2011 to 2018 were quantified to study the spatiotemporal and inter-annual changes in crop phenology with smoothening of NDVI curve by Savitzky–Golay filtering method to drive phenological metrics and predict the yield of cotton for the part of Maharashtra state. Two dates of Landsat-8 datasets with supervised classification-based maximum-likelihood classifier were used to generate crop inventory map. The overall accuracy of the map was 89.1% with a 0.79 kappa coefficient and further used in the generation of cotton crop mask. A correlation was established between cotton yield and the phenological metrics. A multiple regression model constructed with phenological metrics from the year 2011–2016 produced a correlation with 0.85 adjusted R2, 46.97 standard estimated error, 10–6 p value. The fitted model was used to estimate the cotton yield of 2016–2018 with 82.29 kg ha−1 root mean square error, 36.13% mean absolute percentage error, and 0.81 Index of Agreement. The results have shown the potential of the model in capturing the variation in the sowing time, end of the crop season, length of growing period, peak NDVI time, peak NDVI value and amplitude in spatiotemporal scale for drought and normal years on a long-term basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Araya, S., Ostendorf, B., Lyle, G., & Lewis, M. (2018). CropPhenology: An R package for extracting crop phenology from time series remotely sensed vegetation index imagery. Ecological Informatics, 46, 45–56.

    Article  Google Scholar 

  • Bao, G., Chen, J., Chopping, M., Bao, Y., Bayarsaikhan, S., Dorjsuren, A., Tuya, A., Jirigala, B., & Qin, Z. (2019). Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and drought. International Journal of Applied Earth Observation and Geoinformation, 81, 85–97.

    Article  Google Scholar 

  • Bastiaanssen, W. G., & Ali, S. (2003). A new crop yield forecasting model based on satellite measurements applied across the Indus Basin. Agriculture, Ecosystems and Environment, 94, 321–340.

    Article  Google Scholar 

  • Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84.

    Article  Google Scholar 

  • Climate Maharashtra: Temperature, climate graph, Climate table for Maharashtra—Climate-Data.org. Retrieved June 27, 2019 from https://en.climate-data.org/asia/india/maharashtra-747/.

  • Cong, N., Wang, T., Nan, H., Ma, Y., Wang, X., Myneni, R. B., & Piao, S. (2013). Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Global Change Biology, 19(3), 881–891.

    Article  Google Scholar 

  • De Beurs, K. M., & Henebry, G. M. (2004). Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sensing of Environment, 89(4), 497–509.

    Article  Google Scholar 

  • Directorate of Cotton Development GOI. (2017). Status paper of Indian cotton. https://nfsm.gov.in/StatusPaper/CottonStatus2017.pdf.

  • Domenikiotis, C., Spiliotopoulos, M., Tsiros, E., & Dalezios, N. R. (2010). Early cotton yield assessment by the use of the NOAA/AVHRR derived Vegetation Condition Index (VCI) in Greece. International Journal of Remote Sensing, 25(14), 2807–2819.

    Article  Google Scholar 

  • Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. Photogrammetric Engineering & Remote Sensing, 69(6), 665–674.

    Article  Google Scholar 

  • Dubey, S. K., Gavli, A. S., Yadav, S. K., Sehgal, S., & Ray, S. S. (2018). Remote sensing-based yield forecasting for sugarcane (Saccharum officinarum L.) crop in India. Journal of the Indian Society of Remote Sensing, 46(11), 1823–1833.

    Article  Google Scholar 

  • Eklundh, L., & Jönsson, P. (2015). TIMESAT: A software package for time-series processing and assessment of vegetation dynamics. In: Kuenzer, C., Dech, S., & Wagner, W. (Eds.) Remote sensing time series. Remote sensing and digital image processing, vol 22. Cham: Springer. https://doi.org/10.1007/978-3-319-15967-6_7.

    Chapter  Google Scholar 

  • Eklundh, L., Science, E., & Mathematics, A. (2017). TIMESAT 3.3 with seasonal trend decomposition and parallel processing. Software Manual, 1–92.

  • Eklundh, L., Jin, H., Schubert, P., Guzinski, R., & Heliasz, M. (2011). An optical sensor network for vegetation phenology monitoring and satellite data calibration. Sensors, 11(8), 7678–7709.

    Article  Google Scholar 

  • Fernandez-Gimenez, M. E., Batkhishig, B., & Batbuyan, B. (2012). Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. Global Environmental Change, 22(4), 836–851.

    Article  Google Scholar 

  • Galford, G. L., Mustard, J. F., Melillo, J., Gendrin, A., Cerri, C. C., & Cerri, C. E. P. (2008). Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, 112(2), 576–587.

    Article  Google Scholar 

  • Gumma, M. K., Kadiyala, M. D. M., Panjala, P., Ray, S. S., Akuraju, V. R., Dubey, S., Smith, A. P., Das, R., & Whitbread, A. M. (2021). Assimilation of remote sensing data into crop growth model for yield estimation: A case study from India. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-021-01341-6

    Article  Google Scholar 

  • Gumma, M. K., Tummala, K., Dixit, S., Collivignarelli, F., Holecz, F., Kolli, R. N., & Whitbread, A. M. (2020). Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto International. https://doi.org/10.1080/10106049.2020.1805029

    Article  Google Scholar 

  • Gusso, A., Ducati, J. R., Veronez, M. R., Arvor, D., & da Silveira, L. G. (2013). Spectral model for soybean yield estimate using MODIS/EVI data. International Journal of Geosciences, 04(09), 1233–1241.

    Article  Google Scholar 

  • Hebbar, K. B., Venugopalan, M. V., Seshasai, M. V. R., Rao, K. V., Patil, B. C., Prakash, A. H., Kumar, V., Hebbar, K. R., Jeyakumar, P., Bandhopadhyay, K. K., Rao, M. R. K., Khadi, B. M., & Aggarwal, P. K. (2008). Predicting cotton production using Infocrop-cotton simulation model, remote sensing and spatial agro-climatic data. Current Science, 95(11), 1570–1579.

    Google Scholar 

  • Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., & Li, B. (2014). Land cover classification using Landsat 8 operational land imager data in Beijing, China. Geocarto International, 29(8), 941–951.

    Article  Google Scholar 

  • Jin, H., & Eklundh, L. (2014). A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 152, 512–525.

    Article  Google Scholar 

  • Jönsson, L. E. (2015). TIMESAT. http://web.nateko.lu.se/timesat/timesat.asp?cat=8..

  • Jönsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1824–1832.

    Article  Google Scholar 

  • Jönsson, P., & Eklundh, L. (2004). TIMESAT a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8), 833–845.

    Article  Google Scholar 

  • Kalubarme Manik, H., & Saroha, G. P. (2016). Development of district-level agro-meteorological cotton yield models in Punjab. International Journal of Environmental Science and Development, 6(1), 17–32.

    Google Scholar 

  • Labus, M. P., Nielsen, G. A., Lawrence, R. L., Engel, R., & Long, D. S. (2002). Wheat yield estimates using multi-temporal NDVI satellite imagery. International Journal of Remote Sensing, 23(20), 4169–4180.

    Article  Google Scholar 

  • Lloyd, D. (1990). A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing, 11(12), 2269–2279.

    Article  Google Scholar 

  • Lobell, D. B., Ortiz-Monasterio, J. I., Sibley, A. M., & Sohu, V. S. (2013). Satellite detection of earlier wheat sowing in India and implications for yield trends. Agricultural Systems, 115, 137–143.

    Article  Google Scholar 

  • Manjunath, K. R., & Potdar, M. B. (2004). Wheat growth profile: Satellite monitoring and crop yield modelling. Journal of the Indian Society of Remote Sensing, 32(1), 91–102.

    Article  Google Scholar 

  • Martinez, B., & Gilabert, M. A. (2009). Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sensing of Environment, 113(9), 1823–1842.

    Article  Google Scholar 

  • Mkhabela, M. S., Bullock, P., Raj, S., Wang, S., & Yang, Y. (2011). Agricultural and forest meteorology crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agricultural and Forest Meteorology, 151(3), 385–393.

    Article  Google Scholar 

  • Noormets, A., Chen, J., Gu, L., & Desai, A. (2009). The phenology of gross ecosystem productivity and ecosystem respiration in temperate hardwood and conifer chronosequences. In Phenology of ecosystem processes, pp. 59–85.

  • Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, 27–31.

    Article  Google Scholar 

  • Palakuru, M., Yarrakula, K., Chaube, N. R., Sk, K. B., & Satyaji Rao, Y. R. (2019). Identification of paddy crop phenological parameters using dual polarized SCATSAT-1 (ISRO, India) scatterometer data. Environmental Science and Pollution Research, 26(2), 1565–1575.

    Article  Google Scholar 

  • Patel, N. R., Bhattacharjee, B., Mohammed, A. J., Tanupriya, B., & Saha, S. K. (2006). Remote sensing of regional yield assessment of wheat in Haryana, India. International Journal of Remote Sensing, 27(19), 4071–4090.

    Article  Google Scholar 

  • Pathak, T. B., Jones, J. W., Fraisse, C., Wright, D., Hoogenboom, G., & Judge, J. (2009). Uncertainty analysis of CROPGRO-Cotton model. In AGU fall meeting abstracts.

  • Prasad, N. R., Patel, N. R., & Danodia, A. (2020). Crop yield prediction in cotton for regional level using random forest approach. Spatial Information Research. https://doi.org/10.1007/s41324-020-00346-6

    Article  Google Scholar 

  • Prasad, N. R., Patel, N. R., Danodia, A., & Manjunath, K. R. (2021). Comparative performance of semi-empirical based remote sensing and crop simulation model for cotton yield prediction. Modeling Earth Systems and Environment, 7(2), 1–15.

    Google Scholar 

  • Ray, S. S., Pokharna, S. S., & Ajai. (2010). Cotton yield estimation using agrometeorological model and satellite-derived spectral profile. International Journal of Remote Sensing, 20(14), 2693–2702.

    Article  Google Scholar 

  • Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., et al. (2012). Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Global Change Biology, 18(2), 566–584.

    Article  Google Scholar 

  • Ruimy, A., Saugier, B., & Dedieu, G. (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research: Atmospheres, 99(D3), 5263–5283.

    Article  Google Scholar 

  • Sakamoto, T., Gitelson, A. A., & Arkebauer, T. J. (2013). MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sensing of Environment, 131, 215–231.

    Article  Google Scholar 

  • Sakamoto, T., Wardlow, B. D., Gitelson, A. A., Verma, S. B., Suyker, A. E., & Arkebauer, T. J. (2010). A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 114(10), 2146–2159.

    Article  Google Scholar 

  • Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H. (2005). A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96(3–4), 366–374.

    Article  Google Scholar 

  • Sehgal, V. K., Jain, S., Aggarwal, P. K., & Jha, S. (2011). Deriving crop phenology metrics and their trends using times series NOAA-AVHRR NDVI data. Journal of the Indian Society of Remote Sensing, 39(3), 373–381.

    Article  Google Scholar 

  • Sehgal, V. K., Rajak, D. R., Chaudhary, K. N., & Dadhwal, V. K. (2002). Improved regional yield prediction by crop growth monitoring system using remote sensing derived crop phenology: the international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences, 34(7), 329–334.

    Google Scholar 

  • Sisodia, P. S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. International Conference on Recent Advances and Innovations in Engineering. https://doi.org/10.1109/ICRAIE.2014.6909319

    Article  Google Scholar 

  • Steinwender, C. (2018). Real effects of information frictions: When the states and the kingdom became united. American Economic Review, 108(3), 657–696.

    Article  Google Scholar 

  • Thorp, K. R., Ale, S., Bange, M. P., Barnes, E. M., Hoogenboom, G., Lascano, R. J., McCarthy, A. C., Nair, S., Paz, J. O., Rajan, N., Reddy, K. R., Wall, G. W., & White, J. W. (2014). Development and application of process-based simulation models for cotton production: A review of past, present, and future directions. Journal of Cotton Science, 18(1), 10–47.

    Google Scholar 

  • Tripathy, R., Chaudhary, K. N., Nigam, R., Manjunath, K. R., Chauhan, P., Ray, S. S., & Parihar, J. S. (2014). Operational semi-physical spectral-spatial wheat yield model development. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(8), 977–982.

    Article  Google Scholar 

  • Tucker, C. J., Justice, C. O., & Prince, S. D. (1986). Monitoring the grasslands of the Sahel 1984–1985. International Journal of Remote Sensing, 7(11), 1571–1581.

    Article  Google Scholar 

  • Upadhyay, G., Ray, S. S., & Panigrahy, S. (2008). Derivation of crop phenological parameters using multi-date SPOT-VGT-NDVI data: A case study for Punjab. Journal of the Indian Society of Remote Sensing, 36(1), 37–50.

    Article  Google Scholar 

  • Van Dijkt, A., Callis, S. L., Sakamoto, C. M., & Decker, W. L. (1987). Smoothing vegetation index profiles: An alternative method for reducing radiometric disturbance in NOAA/AVHRR data. Photogrammetric Engineering and Remote Sensing, 53(8), 1059–1067.

    Google Scholar 

  • Verma, U., Piepho, H. P., Ogutu, J. O., Kalubarme, M. H., Goyal, M., et al. (2014). Development of zonal agromet models for district-level cotton yield forecasts in Haryana state, India. International Journal of Agricultural and Statistical Sciences , 10(1), 59–65.

    Google Scholar 

  • Vittal, K., Rajendran, T., Srijaya, G. R. C. G. M. S. T., Samra, Y. R. J., & Singh, G. (2004). Districtwise promising technologies for rainfed cotton based production system in India. In Report of AICRP for dryland agriculture, CRIDA-ICAR, Hyderabad.

  • White, J. W., Hoogenboom, G., Stackhouse, P. W., & Hoell, J. M. (2008). Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature data over the continental US. Agricultural and Forest Meteorology, 148(10), 1574–1584.

    Article  Google Scholar 

  • You, X., Meng, J., Zhang, M., & Dong, T. (2013). Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method. Remote Sensing, 5(7), 3190–3211.

    Article  Google Scholar 

Download references

Acknowledgements

This research work was carried-out as a part of SUFALAM project funded by ISRO. The authors are very much thankful to the Director, Indian Institute of Remote Sensing, Dehradun for his invaluable support during the research work. The authors are also very much thankful to the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, N.R., Patel, N.R. & Danodia, A. Cotton Yield Estimation Using Phenological Metrics Derived from Long-Term MODIS Data. J Indian Soc Remote Sens 49, 2597–2610 (2021). https://doi.org/10.1007/s12524-021-01414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01414-6

Keywords

Navigation