Skip to main content

Advertisement

Log in

The Assimilation of Remote Sensing-Derived Soil Moisture Data into a Hydrological Model for the Mahanadi Basin, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Accurate knowledge of the spatio-temporal variation in soil moisture provides insight into larger-scale hydrological processes and can, therefore, help in improving hydrological predictions. The strength of remote sensing for mapping surface soil moisture is well proven. In addition, data assimilation offers the opportunity to combine the advantages of modelling with those of remote sensing data to achieve higher accuracy and continuous improvement in hydrological forecasts. In this study, Advanced Microwave Scanning Radiometer for Earth observation science soil moisture product was assimilated into Variable Infiltration Capacity (VIC) hydrological model using Kalman filter data assimilation technique. Further, the updated multilayer spatio-temporal soil moisture distributions across the Mahanadi Basin, India, were simulated using the hydrological model. The VIC model was set up and parameterized using field-observed and remote sensing-derived data. Based on the sensitivity analysis of the model, the ‘four-parameter’ (Tmax, Tmin, Prec, and WS) meteorological forcing scenario was selected as the operational scenario. The output fluxes obtained from VIC were routed to simulate discharge at five stations for the calibration and validation of the model. With R2 and model efficiency values close to 0.95 and 0.99, respectively, the model was proven to be suitable for simulating the hydrological responses of the basin. Soil moisture was assimilated in the top soil layer of the model using the Kalman filter approach, and the multilayer soil moisture regime was generated using the modelling approach. The validation of soil moisture (assimilated) products proves that these products are better than remote sensing and traditionally modelled soil moisture products, in both spatial and temporal domains in terms of availability and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Source: NBSSLUP

Fig. 3

Source: ISRO-GBP

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., & Thakur, P. K. (2012). Climate and LULC change scenarios to study its impact on hydrological regime. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS), 39-B8, 147–152. https://doi.org/10.5194/isprsarchives-xxxix-b8-147-2012.

    Article  Google Scholar 

  • Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., Thakur, P. K., & Roy, P. S. (2013). Runoff potential assessment over Indian landmass: A macro-scale hydrological modeling approach. Current Science, 104(7), 950–959.

    Google Scholar 

  • Al Bitar, A., Leroux, D., Kerr, Y. H., Merlin, O., Richaume, P., Sahoo, A., et al. (2012). Evaluation of SMOS soil moisture products over continental US using the SCAN/SNOTEL network. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1572–1586.

    Article  Google Scholar 

  • Behera, S. S., Nikam, B. R. & Babel, M. S. (2017). Assimilation of remotely sensed soil moisture into hydrological model: A case study of Mahanadi Basin, India. In: Proceedings of ACRS 2017: 38th Asian Conference on Remote Sensing organized at New Delhi, India, October 23–27, 2017.

  • Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R., Ménard, C. B., et al. (2011). The joint UK land environment simulator (JULES), model description—Part 1: Energy and water fluxes. Geoscientific Model Development, 4(3), 677–699.

    Article  Google Scholar 

  • Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., et al. (2010). Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 14(10), 1881.

    Article  Google Scholar 

  • Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., & Hahn, S. (2012). Assimilation of surface-and root-zone ASCAT soil moisture products into rainfall–runoff modeling. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2542–2555.

    Article  Google Scholar 

  • Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE, 7(1), 26–0028.

    Article  Google Scholar 

  • Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., et al. (1996). Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research: Atmospheres, 101(D3), 7251–7268.

    Article  Google Scholar 

  • Choudhury, B. J., Schmugge, T. J., Chang, A., & Newton, R. W. (1979). Effect of surface roughness on the microwave emission from soils. Journal of Geophysical Research: Oceans, 84(C9), 5699–5706.

    Article  Google Scholar 

  • Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., et al. (2011). The joint UK land environment simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 4(3), 701–722.

    Article  Google Scholar 

  • Crosson, W. L., Laymon, C. A., Inguva, R., & Schamschula, M. P. (2002). Assimilating remote sensing data in a surface flux–soil moisture model. Hydrological Processes, 16(8), 1645–1662.

    Article  Google Scholar 

  • Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., et al. (2003). The common land model (CLM). Bulletin of the American Meteorological Society, 84, 1013–1023.

    Article  Google Scholar 

  • De Lannoy, G. J., Houser, P. R., Pauwels, V., & Verhoest, N. E. (2007). State and bias estimation for soil moisture profiles by an ensemble Kalman filter: Effect of assimilation depth and frequency. Water Resources Research. https://doi.org/10.1029/2006wr005100.

    Article  Google Scholar 

  • Draper, C., Mahfouf, J. F., Calvet, J. C., Martin, E., & Wagner, W. (2011). Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France. Hydrology and Earth System Sciences, 15(12), 3829.

    Article  Google Scholar 

  • Entekhabi, D., Nakamura, H., & Njoku, E. G. (1994). Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Transactions on Geoscience and Remote Sensing, 32(2), 438–448.

    Article  Google Scholar 

  • Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., et al. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704–716.

    Article  Google Scholar 

  • Gao, Z., Xhang, Z., & Zhang, X. (2009). Responses of water yield to changes in vegetation at a temporal scale. Frontiers of Forestry in China, 4(1), 53–59.

    Article  Google Scholar 

  • Garg, V., Aggarwal, S. P., Gupta, P. K., Nikam, B. R., & Thakur, P. K. (2017). Assessment of land use land cover change impact on hydrological regime of a basin. Environmental Earth Sciences, 76, 635. https://doi.org/10.1007/s12665-017-6976-z.

    Article  Google Scholar 

  • Garg, V., Aggarwal, S. P., Nikam, B. R., & Thakur, P. K. (2013). Hypothetical scenario based impact assessment of climate change on runoff potential of a basin. ISH Journal of Hydraulic Engineering, 19(3), 244–249.

    Article  Google Scholar 

  • Garg, V., Dhumal, I. R., Nikam, B. R., Thakur, P. K., Aggarwal, S. P., Srivastav, S. K. & Senthil Kumar, A. (2016). Water resources assessment of Godavari river basin, India. In: Proceedings of ACRS 2016: 37th Asian conference on remote sensing organized at Colombo, Sri Lanka, October 17–21, 2016.

  • Garg, V., Khwanchanok, A., Gupta, P. K., Aggarwal, S. P., Kiriwongwattana, K., Thakur, P. K., et al. (2012). Urbanisation effect on hydrological response: A case study of Asian River Watershed, India. Journal of Environment and Earth Science, 2(9), 39–50.

    Google Scholar 

  • Georgakakos, K. P. (1996). Soil moisture theories and observations (special issue). Journal of Hydrology, 184, 131–152.

    Article  Google Scholar 

  • Gupta, P. K. (2012). User friendly open GIS tool for large scale data assimilation-A case study of hydrological modelling. ISPRS-International archives of the photogrammetry, remote sensing and spatial information sciences (pp. 427–430).

  • Hanson, J. D., Rojas, K. W., & Schaffer, M. J. (1999). Calibrating the root zone water quality model. Agronomy Journal, 91, 171–177.

    Article  Google Scholar 

  • Heathman, G. C., Starks, P. J., Ahuja, L. R., & Jackson, T. J. (2003). Assimilation of surface soil moisture to estimate profile soil water content. Journal of Hydrology, 279(1), 1–17.

    Article  Google Scholar 

  • Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed, K. H., & Goodrich, D. C. (1998). Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resources Research, 34(12), 3405–3420.

    Article  Google Scholar 

  • Hurkmans, R. T. W. L., Terink, W., Uijlenhoet, R., Moors, E. J., Troch, P. A., & Verburg, P. H. (2009). Effects of land use changes on streamflow generation in the Rhine basin. Water Resources Research, 45, W06405. https://doi.org/10.1029/2008WR007574.

    Article  Google Scholar 

  • Imaoka, K., Kachi, M., Fujii, H., Murakami, H., Hori, M., Ono, A., et al. (2010). Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change. Proceedings of the IEEE, 98(5), 717–734.

    Article  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45.

    Article  Google Scholar 

  • Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Martinuzzi, J. A. M. J., Font, J., & Berger, M. (2001). Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing, 39(8), 1729–1735.

    Article  Google Scholar 

  • Koster, R. D., & Milly, P. C. D. (1997). The interplay between transpiration and runoff formulations in land surface schemes used with atmospheric models. Journal of Climate, 10(7), 1578–1591.

    Article  Google Scholar 

  • Koster, R. D., & Suarez, M. J. (1996). Energy and water balance calculations in the Mosaic LSM. Technical Report Series on Global Modeling and Data Assimilation. NASA Technical Memorandum 104606, 9.

  • Kostov, K. G., & Jackson, T. J. (1993). Estimating profile soil moisture from surface layer measurements–A review. SPIE, 1941, 125–136.

    Google Scholar 

  • Kumar, S. V., Reichle, R. H., Harrison, K. W., Peters-Lidard, C. D., Yatheendradas, S., & Santanello, J. A. (2012). A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resources Research. https://doi.org/10.1029/2010wr010261.

    Article  Google Scholar 

  • Lahoz, W. A., & De Lannoy, G. J. (2014). Closing the gaps in our knowledge of the hydrological cycle over land: conceptual problems. Surveys In Geophysics, 35(3), 623–660.

    Article  Google Scholar 

  • Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., et al. (2011). Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2011ms00045.

    Article  Google Scholar 

  • Leroux, D. J., Kerr, Y. H., Richaume, P., & Fieuzal, R. (2013). Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sensing of Environment, 133, 240–250.

    Article  Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7), 14415–14428.

    Article  Google Scholar 

  • Liang, X., Wood, E. F., & Lettenmaier, D. P. (1996). Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Global and Planetary Change, 13(1–4), 195–206.

    Article  Google Scholar 

  • Liang, X., Wood, E. F., & Lettenmaier, D. P. (1999). Modeling ground heat flux in land surface parameterization schemes. Journal of Geophysical Research: Atmospheres, 104(D8), 9581–9600.

    Article  Google Scholar 

  • Liang, X., & Xie, Z. (2001). A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Advances in Water Resources, 24(9), 1173–1193.

    Article  Google Scholar 

  • Lohmann, D., Nolte-Holube, R. A. L. P. H., & Raschke, E. (1996). A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A, 48(5), 708–721.

    Article  Google Scholar 

  • Lohmann, D., Raschke, E., Nijssen, B., & Lettenmaier, D. P. (1998a). Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrological Sciences Journal, 43(1), 131–141.

    Article  Google Scholar 

  • Lohmann, D., Raschke, E., Nijssen, B., & Lettenmaier, D. P. (1998b). Regional scale hydrology: II. Application of the VIC-2L model to the Weser River. Germany. Hydrological Sciences Journal, 43(1), 143–158.

    Article  Google Scholar 

  • Martens, B., Lievens, H., Colliander, A., Jackson, T. J., & Verhoest, N. E. (2015). Estimating effective roughness parameters of the L-MEB model for soil moisture retrieval using passive microwave observations from SMAPVEX12. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 4091–4103.

    Article  Google Scholar 

  • Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., et al. (2013). The SURFEXv7. 2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geoscientific Model Development, 6, 929–960.

    Article  Google Scholar 

  • Matgen, P., Fenicia, F., Heitz, S., Plaza, D., de Keyser, R., Pauwels, V. R. N., et al. (2012). Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application. Advances in Water Resources, 44, 49–65.

    Article  Google Scholar 

  • Maurer, E. P., O’Donnell, G. M., Lettenmaier, D. P., & Roads, J. O. (2001). Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. Journal of Geophysical Research: Atmospheres, 106(D16), 17841–17862.

    Article  Google Scholar 

  • Merlin, O., Al Bitar, A., Walker, J. P., & Kerr, Y. (2010). An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sensing of Environment, 114(10), 2305–2316.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., & Wood, E. F. (1997). Streamflow simulation for continental-scale river basins. Water Resources Research, 33(4), 711–724.

    Article  Google Scholar 

  • Nijssen, B., Schnur, R., & Lettenmaier, D. P. (2001). Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–1993. Journal of Climate, 14(8), 1790–1808.

    Article  Google Scholar 

  • Nikam, B. R., Garg, V., Jaya, K., Gupta, P. K., Srivastav, S. K., Thakur, P. K., et al. (2018). Analyzing future water availability and hydrological extremes in Krishna basin under changing climatic conditions. Arabian Journal of Geosciences, 11(19), 581. https://doi.org/10.1007/s12517-018-3936-1.

    Article  Google Scholar 

  • Nikam, V. V., Nikam, B. R., Garg, V. & Aggarwal, S. P. (2015). Assimilation of remote sensing derived soil moisture in macroscale hydrological model. In: Proceedings of ‘Hydro International 2015’, 20th international conference on hydraulics. Water Resources and River Engineering organized at IIT Roorkee, India, 17–19 December, 2015.

  • Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K., & Nghiem, S. V. (2003). Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 215–229.

    Article  Google Scholar 

  • Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., & Mukhopadyay, B. (2014). Development of a new high spatial resolution (0.25° × 0.25°) Long Period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 1–18.

    Google Scholar 

  • Panciera, R., Walker, J. P., & Merlin, O. (2009). Improved understanding of soil surface roughness parameterization for L-band passive microwave soil moisture retrieval. IEEE Geoscience and Remote Sensing Letters, 6(4), 625–629.

    Article  Google Scholar 

  • Pauwels, V. R., Hoeben, R., Verhoest, N. E., & De Troch, F. P. (2001). The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. Journal of Hydrology, 251(1), 88–102.

    Article  Google Scholar 

  • Pauwels, V., Hoeben, R., Verhoest, N. E., De Troch, F. P., & Troch, P. A. (2002). Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values. Hydrological Processes, 16(5), 995–1013.

    Article  Google Scholar 

  • Rahmoune, R., Ferrazzoli, P., Kerr, Y. H., & Richaume, P. (2013). SMOS level 2 retrieval algorithm over forests: Description and generation of global maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1430–1439.

    Article  Google Scholar 

  • Rao, P. G. (1993). Climatic changes and trends over a major river basin in India. Climate Research, 2, 215–223.

    Article  Google Scholar 

  • Reichle, R. H., & Koster, R. D. (2004). Bias reduction in short records of satellite soil moisture. Geophysical Research Letters. https://doi.org/10.1029/2004gl020938.

    Article  Google Scholar 

  • Sabater, J. M., De Rosnay, P., & Balsamo, G. (2011). Sensitivity of L-band NWP forward modelling to soil roughness. International Journal of Remote Sensing, 32(19), 5607–5620.

    Article  Google Scholar 

  • Sahoo, A. K., De Lannoy, G. J., Reichle, R. H., & Houser, P. R. (2013). Assimilation and downscaling of satellite observed soil moisture over the Little River Experimental Watershed in Georgia, USA. Advances in Water Resources, 52, 19–33.

    Article  Google Scholar 

  • Sheffield, J., Pan, M., Wood, E. F., Mitchell, K. E., Houser, P. R., Schaake, J. C., et al. (2003). Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2002jd003274.

    Article  Google Scholar 

  • Sheffield, J., & Wood, E. F. (2008). Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. Journal of Climate, 21(3), 432–458.

    Article  Google Scholar 

  • Srivastava, A. K., Rajeevan, M., & Kshirsagar, S. R. (2009). Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Science Letters, 10(4), 249–254.

    Google Scholar 

  • Su, F., Adam, J. C., Bowling, L. C., & Lettenmaier, D. P. (2005). Streamflow simulations of the terrestrial Arctic domain. Journal of Geophysical Research: Atmospheres, 110(D08112), 1–25.

    Google Scholar 

  • Todini, E. (1996). The ARNO rainfall—runoff model. Journal of Hydrology, 175(1–4), 339–382.

    Article  Google Scholar 

  • Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., et al. (2013). The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift, 22(1), 5–33.

    Article  Google Scholar 

  • Walker, J. P., Willgoose, G. R., & Kalma, J. D. (2001). One-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: A simplified soil moisture model and field application. Journal of Hydrometeorology, 2(4), 356–373.

    Article  Google Scholar 

  • Wang, J. R., O’Neill, P. E., Jackson, T. J., & Engman, E. T. (1983). Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Transactions on Geoscience and Remote Sensing, 1, 44–51.

    Article  Google Scholar 

  • Wigneron, J. P., Pardé, M., Waldteufel, P., Chanzy, A., Kerr, Y., Schmidl, S., et al. (2004). Characterizing the dependence of vegetation model parameters on crop structure, incidence angle, and polarization at L-band. IEEE Transactions on Geoscience and Remote Sensing, 42(2), 416–425.

    Article  Google Scholar 

  • Wood, E. F., Lettenmaier, D., Liang, X., Nijssen, B., & Wetzel, S. W. (1997). Hydrological modeling of continental-scale basins. Annual Review of Earth and Planetary Sciences, 25(1), 279–300.

    Article  Google Scholar 

  • Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L. P. H., Bierkens, M. F., Blyth, E., et al. (2011). Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resources Research, 47(5), 1–5. https://doi.org/10.1029/2010wr010090.

    Article  Google Scholar 

  • Xie, Z., Yuan, F., Duan, Q., Zheng, J., Liang, M., & Chen, F. (2007). Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China. Journal of Hydrometeorology, 8(3), 447–468.

    Article  Google Scholar 

  • Yuan, F., Xie, Z., Liu, Q., Yang, H., Su, F., Liang, X., et al. (2004). An application of the VIC-3L land surface model and remote sensing data in simulating streamflow for the Hanjiang River basin. Canadian Journal of Remote Sensing, 30(5), 680–690.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar Ramchandra Nikam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S.S., Nikam, B.R., Babel, M.S. et al. The Assimilation of Remote Sensing-Derived Soil Moisture Data into a Hydrological Model for the Mahanadi Basin, India. J Indian Soc Remote Sens 47, 1357–1374 (2019). https://doi.org/10.1007/s12524-019-00954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-00954-2

Keywords

Navigation