Skip to main content

Advertisement

Log in

Assessing the Performance of Independent Component Analysis in Remote Sensing Data Processing

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Independent component analysis (ICA) is a novel method to be considered as a powerful type of analysis in the process of source signal separation. Based on the capabilities of this particular analysis, there will be a hypothesis of applying ICA in the image processing of remote sensing data. This paper aims to introduce the ability of ICA in contrasting and highlighting some area with potential of mineralization. Considering and applying ICA transformation on the ETM+ image of southern Masule, Iran has resulted in finding some favorable points for further investigation. Moreover, sampling program on the indicated area has led to identify some huge, unexpected lithology and dikes. ICA analysis is a robust method even in remote sensing data processing with the high speed and capabilities in separating source signals from noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdelsalam, M. G., Stern, R. J., & Berhane, W. G. (2000). Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho alteration zone in northern Eritrea. Journal of African Earth Sciences, 30(4), 903–916.

    Article  Google Scholar 

  • Abrams, M. J., Brown, D., Lepley, L., & Sadowski, R. (1983). Remote sensing of porphyry copper deposits in Southern Arizona. Economic Geology, 78(4), 591–604.

    Article  Google Scholar 

  • Adams, J. B., Smith, M. O., & Gillespie, A. R. (1993). Imaging spectroscopy: interpretation based on spectral mixture analysis. In C. M. Pieters & P. A. J. Englert (Eds.), Topics in Remote Sensing IV: Remote Geochemical Analysis: Elemental and Mineralogical Composition (pp. 145–166). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1999). The 'Independent Components' of natural scenes are edge filters. Vision Research, 37(23), 3327–3338.

    Article  Google Scholar 

  • Blackburn, G. A., & Milton, E. J. (1995). Ecology through spectrometry: the detection and classification of canopy gaps in deciduous woodlands. In P. M. Mather (Ed.), Understanding the Terrestrial Environment: Remote Sensing Data Systems and Networks (pp. 175–187). Chichester: Wiley.

    Google Scholar 

  • Boardman, J. W., & Kruse, F. A. (1994). Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada. In ERIM (Ed.) Proc. 10th Thematic Conference on Geological Remote Sensing, San Antonio, TX, 9–12 May 1994 pp. I-407–418.

  • Chen, C. H., & Zhang, X. (1999). Independent component analysis for remote sensing study. Proceedings of SPIE, 387, 150–158.

    Article  Google Scholar 

  • Common, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314. Special Issue on High-order Statistics.

    Article  Google Scholar 

  • Everett, J. R., Dykestra, J. D., & Sheffield, C. A. (1983). Contribution of Landsat-4 Thematic Mapper data to geologic exploration, Proc. Eighth William T. Pecora Memorial symposium, Sioux Falls, South Dakota, p 9.

  • Franklin, J. (1995). Predictive vegetative mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19(4), 474–499.

    Article  Google Scholar 

  • Goetz, A. F. H., Rock, B. N., & Rowan, L. C. (1983). Remote sensing for exploration: an overview. Economic Geology, 78(4), 573–590.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (1993). Digital image processing. New York: Addison-Wesley Publishing Company, Inc.

    Google Scholar 

  • Hall, D. L. (1992). Mathematical techniques in multisensor data fusion. Boston: Artech House.

    Google Scholar 

  • Hall, D. L. (1997). An introduction to multisensor data fusion. Proceedings of The IEEE, 85(1), 6–23.

    Article  Google Scholar 

  • Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks, 10(3), 626–634.

    Article  Google Scholar 

  • Hyvärinen, A. (1999). Survey on independent component analysis. Neural Computing Surveys, 2, 94–128.

    Google Scholar 

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430.

    Article  Google Scholar 

  • Kruse, F. A., Boardman, J. W., & Huntington, J. F. (2003). Comparison of airborne hyperspectral data and EO-1 hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1388–1400.

    Article  Google Scholar 

  • Lee T. W. (1998). Independent component analysis. Theory and Applications Kluwer Academic Publishers.

  • Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 276–292.

    Article  Google Scholar 

  • Li, H., Manjunath, B. A., & Mitra, S. K. (1995). Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 57(3), 235–245.

    Article  Google Scholar 

  • Liu, J. G., & Mason, P. J. (2009). Essential image processing and GIS for remote sensing. John Wiley & Sons Ltd.

  • Mackiewicz, A., & Ratajczak, W. (1993). Principal components analysis (PCA). Computers & Geosciences, 19, 303–342.

    Article  Google Scholar 

  • Nazari, H., & Mosavi, M. (2005). 1:100000 geological quadrangle map of Bandar Anzali. Mining geological department of Iran.

  • Okada, K., Segawa, K., & Hayashi, I. (1993). Removal of the vegetation effect from LANDSAT TM and GER imaging spectroradiometers data. ISPRS Journal of Photogrammetry and Remote Sensing, 48(6), 16–27.

    Article  Google Scholar 

  • Papp, E., & Cudahy, T., (2002). Hyperspectral remote sensing. In: Papp, E. (Ed.), Geophysical and Remote Sensing Methods for Regolith Exploration. CRC LEME Open File Report, vol. 144. Canberra, Australia, pp. 13–21.

  • Peli, T., Peli, E., Ellis, K., & Stahl, R. (1999). Multi-spectral image fusion for visual display, SPIE vol. 3719 Sensor Fusion: Architectures, Algorithms, and Applications III, pp 359–368.

  • Perry, S. L. (2004). Spaceborne and airborne remote sensing systems for mineral exploration-case histories using infrared spectroscopy. In P. L. King, M. S. Ramsey, & G. A. Swayze (Eds.), Infrared spectroscopy in geochemistry, exploration geochemistry, and remote sensing (pp. 227–240). London: Mineralogic Association of Canada.

    Google Scholar 

  • Podwysocki, M. H., Mimms, D. L., Salisbury, J. W., Bender, L. V., & Jones, O. D. (1984). Analysis of Landsat-4 TM data for Lithologic and image mapping purpose. In: Barker, J. (Ed.), Landsat-4 Science Investigations Summary, v. 2, NASA Conference Publication 2326, Greenbelt, MD, 6 December 1984, pp. 35–39.

  • Richards, J. A., & Jia, X. (1998). Remote sensing digital image analysis: An introduction. New York: Springer.

    Google Scholar 

  • Rosema, A., Verhoef, W., Noorbergen, H., & Borgesius, J. (1992). A new light interaction model in support of forest monitor- ing. Remote Sensing of Environment, 42, 23–41.

    Article  Google Scholar 

  • Rowan, L. C., Goetz, A. F. H., & Ashley, R. P. (1977). Discrimination of hydrothermally altered and unaltered rocks in visible and nearinfrared multispectral images. Geophysics, 42(3), 522–535.

    Article  Google Scholar 

  • Sabine, C. (1997). Remote sensing strategies for mineral exploration. In A. E. Rencz (Ed.), Remote sensing for the earth sciences (pp. 375–447). New York: Wiley.

    Google Scholar 

  • Sabins, F. F. (1996). Remote sensing principles and interpretation (3rd ed.). New York: Freeman & Co. 494.

    Google Scholar 

  • Sellers, P. J., & Schimel, D. (1993). Remote sensing of the land biosphere and biogeochemistry in the EOS era: science priorities, methods and implementation. Global and Planetary Change, 7, 279–297.

    Article  Google Scholar 

  • Singh, A., & Eklundh, L. (1993). A Comparative Analysis Of Standardised And Unstandardised Principal Components Analysis In Remote Sensing. International Journal of Remote Sensing, 14, 1359–1370.

    Article  Google Scholar 

  • Singh, A., & Harrison, A. (1985). Standardized principal components. International Journal of Remote Sensing, 6, 883–896.

    Article  Google Scholar 

  • Strahler, A. H., & Jupp, D. L. B. (1990). Geometric-optical modelling of forests as remotely sensed scenes composed of three dimensional, discrete objects. In R. Myneni & J. Ross (Eds.), Photon-vegetation Interactions: Applications in optical remote sensing and plant ecology (pp. 162–190). Heidelberg: Springer.

    Google Scholar 

  • Sultan, M., Arvidson, R. E., Sturchio, N. C., & Guinness, E. A. (1987). Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt. Geological Society of America Bulletin, 99(6), 748–762.

    Article  Google Scholar 

  • Thurmond, A. K., Abdelsalam, M. G., & Thurmond, J. B. (2006). Optical-radar-DEM remote sensing data integration for geological mapping in the Afar Depression, Ethiopia. Journal of African Earth Sciences, 44(2006), 119–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoof Gholami.

About this article

Cite this article

Gholami, R., Moradzadeh, A. & Yousefi, M. Assessing the Performance of Independent Component Analysis in Remote Sensing Data Processing. J Indian Soc Remote Sens 40, 577–588 (2012). https://doi.org/10.1007/s12524-011-0189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-011-0189-9

Keywords

Navigation