Skip to main content
Log in

Towards an understanding of hominin marrow extraction strategies: a proposal for a percussion mark terminology

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Percussion marks have been studied in the field of archaeology for more than a century. Researchers have identified, characterized and analysed them in order to distinguish them from traces of environment modification to bone and reconstruct hominin subsistence strategies. The multiplicity of studies based on percussion marks in different languages has led to a proliferation of different terminologies used for the same marks, especially in English. In addition, as a result of numerous experimental studies or ethnological observations, it is possible to accurately identify the different steps of the butchery process and each of the related marks. We know from experimental studies that the morphology of percussion traces inflicted by the same tools can differ as their morphology depends on many factors (i.e. location and intensity of blows, intrinsic bone variables). In addition to this, carnivore and hominin traces can be superimposed, which sometimes renders their interpretation difficult. Renewed interest in these percussion marks owing to the emergence of new technical means highlighted the need to review their classification and clarify the nomenclature. With this in mind, we reviewed the abundant scientific literature to propose a refined and descriptive nomenclature. The aim is to provide a coherent terminology for the description and analysis of impact fractures in different European languages. We also propose classifying percussion marks into three categories: (1) percussion marks sensu stricto, (2) traces consecutive to bone breakage and (3) striation marks related to marrow extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe Y (2005) Hunting and butchery patterns of the Evenki in northern Transbaikalia, Russia. Stony brook University

  • Anconetani P (1999) An experimental approach to intentional bone fracture: a case study from the Middle Pleistocene site of Isernia La Pineta. In: Gaudzinski-windheuser S, Turner E (eds) The Role of Early Humans in the Accumulation of European Lower and Middle Palaeolithic Bone Assemblages. Habelt, pp 121–138

  • Archer M, Crawford IM, Merrilees D (1980) Incisions, breakages and charring, some probably man-made, in fossil bones from mammoth cave, Western Australia. Alcheringa 4:115–131. https://doi.org/10.1080/03115518008619643

    Article  Google Scholar 

  • Arilla M, Rosell J, Blasco R, Domínguez-Rodrigo M, Pickering TR (2014) The “bear” essentials: Actualistic research on Ursus arctos arctos in the Spanish Pyrenees and its implications for paleontology and archaeology. PLoS One 9:e102457. https://doi.org/10.1371/journal.pone.0102457

    Article  Google Scholar 

  • Arilla M, Rosell J, Blasco R (2019) Contributing to characterise wild predator behaviour: consumption pattern, spatial distribution and bone damage on ungulate carcasses consumed by red fox (Vulpes vulpes). Archaeol Anthropol Sci 11:2271–2291. https://doi.org/10.1007/s12520-018-0675-x

    Article  Google Scholar 

  • Arriaza MC, Aramendi J, Maté-González MÁ et al (2018) Geometric-morphometric analysis of tooth pits and the identification of felid and hyenid agency in bone modification. Quat Int. https://doi.org/10.1016/j.quaint.2018.11.023

    Google Scholar 

  • Balasse M, Brugal J-P, Dauphin Y, Geigl EM, Oberlin C, Reiche I (2015). Messages d'os. Archéométrie du squelette animal et humain. Editions des archives contemporaines: Paris.

  • Barba R, Domínguez-Rodrigo M (2005) The Taphonomic relevance of the analysis of bovid long limb bone shaft features and their application to element identification: study of bone thickness and morphology of the medullary cavity. J Taphon 3:17–30

    Google Scholar 

  • Barone R (1976) Anatomie comparée des mammifères domestiques : Tome 1. Ostéologie, Paris

    Google Scholar 

  • Behrensmeyer AK, Gordon KD, GT Yanagi (1989) Nonhuman bone modification to Miocene fossils from Pakistan. In: Bonnichsen RMS (eds) Bone Modification. Orono, Maine, pp 99–120

  • Binford LR (1978) Nunamiut: Ethnoarchaeology. Academic P, New-York

    Google Scholar 

  • Binford LR (1981) Bones: ancient men and modern myths. Academic P, New-York

    Google Scholar 

  • Binford LR (1984) Bones of contention: a reply to Glynn Isaac. Am Antiq 49:164–167. https://doi.org/10.2307/280522

    Article  Google Scholar 

  • Black D, De Chardin PT, Yang CC et al (1933) Fossil man in China: the Choukoutien cave deposits with a synopsis of our present knowledge of the late Cenozoic in China. Geol Surv China, Sect Geol Natl Acad Peiping 11:1–10

    Google Scholar 

  • Blasco R, Rosell J, Domínguez-Rodrigo M, Lozano S, Pastó I, Riba D, Vaquero M, Peris JF, Arsuaga JL, de Castro JM, Carbonell E (2013) Learning by heart: cultural patterns in the faunal processing sequence during the middle Pleistocene. PLoS One 8:e55863. https://doi.org/10.1371/journal.pone.0055863

    Article  Google Scholar 

  • Blasco R, Domínguez-Rodrigo M, Arilla M et al (2014) Breaking bones to obtain marrow: a comparative study between percussion by batting bone on an anvil and hammerstone percussion. Archaeometry 56:1085–1104. https://doi.org/10.1111/arcm.12084

    Article  Google Scholar 

  • Blumenschine RJ (1986) Carcass consumption sequences and the archaeological distinction of scavenging and hunting. J Hum Evol 15:639–659. https://doi.org/10.1016/S0047-2484(86)80002-1

    Article  Google Scholar 

  • Blumenschine RJ (1988) An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. J Archaeol Sci 15:483–502. https://doi.org/10.1016/0305-4403(88)90078-7

    Article  Google Scholar 

  • Blumenschine RJ (1995) Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge. Tanzania J Hum Evol 29:21–51

    Google Scholar 

  • Blumenschine RJ, Marean CW (1993) A carnivore’s view of archaeological bone assemblages. In: Hudson J (ed) from bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains. Southern Illinois, pp 273–300

  • Blumenschine RJ, Selvaggio MM (1988) Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333:763–765

    Google Scholar 

  • Blumenschine RJ, Selvaggio MM (1991) On the marks of marrow bone processing by hammerstones and hyenas: their anatomical patterning and archaeological implications. In: Clark JD (ed) Cultural beginnings: approaches to understanding early hominid life-ways in the African savanna. Mainz, pp 17–32

  • Blumenschine RJ, Marean CW, Capaldo SD (1996) Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks , percussion marks , and carnivore tooth marks on bone surfaces. J Archaeol Sci 23:493–507. https://doi.org/10.1006/jasc.1996.0047

    Article  Google Scholar 

  • Boesch C, Boesch H (1989) Hunting behavior of wild chimpanzees in the Tai National Park. Am J Phys Anthr 78:547–573. https://doi.org/10.1002/ajpa.1330780410

    Article  Google Scholar 

  • Bonnichsen R (1979) Pleistocene bone technology in the Beringian Refugium. Musée Natl l’Homme Collect Mercur Comm Archéologique du Canada Publ d’Archéologie Doss Ottawa 89:1–280

    Google Scholar 

  • Bonnichsen R, Will RT (1980) Cultural modification of bone: the experimental approach in faunal analysis. In: Gilbert BM (ed) Mammalian osteology, 2nd edn. Missouri Archaeological Society, Colombia, Missouri, pp 7–30

    Google Scholar 

  • Boschian G, Saccà D (2015) In the elephant , everything is good : Carcass use and re-use at Castel di. Quat Int 361:288–296. https://doi.org/10.1016/j.quaint.2014.04.030

    Article  Google Scholar 

  • Boschian G, Caramella D, Saccà D, Barkai R (2019) Are there marrow cavities in Pleistocene elephant limb bones, and was marrow available to early humans? New CT scan results from the site of Castel di Guido (Italy). Quat Sci Rev 215:86–97. https://doi.org/10.1016/j.quascirev.2019.05.010

    Article  Google Scholar 

  • Boulestin B (1998) Approche taphonomique des restes humains. Le cas des mésolithiques de la gotte des Perrats (Agris, Charente). 435

  • Boulestin B (1999) Approche taphonomique des restes humains. Publishers of British Archaeological Reports, Oxford

    Google Scholar 

  • Brain CK (1969) The contribution of Namib Desert Hottentots to an understanding of australopithecine bone accumulations. Sci Pap Namib Desert Res Stn 39:13–22

    Google Scholar 

  • Brain CK (1981) The hunters or the hunted?: an introduction to African cave taphonomy. University of Chicago Press, Chicago

    Google Scholar 

  • Breuil H (1938) The use of bone implements in the old Paleolithic period. Antiquity 12:56–67

    Google Scholar 

  • Breuil H, Boyle ME (1939) Bone and antler industry of the Choukoutien" Sinanthropus" site. Geol Surv China 6:1–20

    Google Scholar 

  • Breuil H, Lantier R (1959) Les hommes de la pierre ancienne: paléolithique et mésolithique. Pavot, Paris

    Google Scholar 

  • Brugal J-P (2017) TaphonomieS. Editions d, Paris

    Google Scholar 

  • Brugal JP, Defleur A (1989) Approche expérimentale de la fracturation des os des membres de grands mammifère. Artefacts 7:14–20

    Google Scholar 

  • Bunn HT (1981) Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge. Nature 291:574–577. https://doi.org/10.1038/291574a0

    Article  Google Scholar 

  • Bunn HT (1982) Animal bones and archeological inference. Science (80- ) 215:494–495. https://doi.org/10.1126/science.215.4532.494

    Article  Google Scholar 

  • Bunn HT (1991) A Taphonomic perspective on the archaeology of human origins. Annu Rev Anthropol 20:433–467. https://doi.org/10.1146/annurev.an.20.100191.002245

    Article  Google Scholar 

  • Bunn HT, Kroll EM, Ambrose SH et al (1986) Systematic Butchery by Pijo / Pleistocene Hominids at Olduvai Gorge , Tanzania [and Comments and Reply]. Curr Anthropol 27:431–452

    Google Scholar 

  • Capaldo SD (1995) Inferring hominid and carnivore behavior from dual-patterned archaeofaunal assemblages. Rutgers The State University of New Jersey - New Brunswick

  • Capaldo SD (1997) Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. J Hum Evol 33:555–597. https://doi.org/10.1006/jhev.1997.0150

    Article  Google Scholar 

  • Capaldo SD, Blumenschine RJ (1994) A quantitative diagnosis of notches made by Hammerstone percussion and carnivore gnawing on bovid long bones. Am Antiq 59:724–748

    Google Scholar 

  • Chevillard, L (2018) Du geste au stigmate: apport de l’expérimentation à la caractérisation des impacts de percussion en contexte archéologique. Master Thesis. Muséum national d’Histoire naturelle: Paris p.40

  • Cavallo JA, Blumenschine RJ (1989) Tree-stored leopard kills: expanding the hominid scavenging niche. J Hum Evol 18(4):431–452

    Google Scholar 

  • Costamagno S (1999) Stratégies de Chasse et Fonction des Sites au Magdalénien dans le Sud de la France. PhD Thesis, Université Bordeaux I, Bordeaux

  • Costamagno S, David F (2009) Comparaison des pratiques bouchères et culinaires de différents groupes sibériens vivant de la renniculture. Archaeofauna 18:9–25

    Google Scholar 

  • Currey JD (1984) What should bones be designed to do? Calcif Tissue Int. https://doi.org/10.1007/BF02406127

    Google Scholar 

  • Currey JD (2012) The structure and mechanics of bone. J Mater Sci 47:41–54. https://doi.org/10.1007/s10853-011-5914-9

    Article  Google Scholar 

  • Dart RA (1957) The Osteodontokeratic culture of Australopithecus Promethius: the total contents of the breccia hitherto. Transvaal Museum Mem 10:21–35

    Google Scholar 

  • Dart RA (1960) The persistence of some tools and utensils found first in the Makapansgat grey breccia. S Afr J Sci 56:71–74

    Google Scholar 

  • Dauvois M (1974) Industrie osseuse préhistorique et expérimentations. In: Camp-Fabrer H (ed) Premier colloque international sur l’industrie de l’os dans la préhistoire. Senanque, pp 72–84

  • Delpech F, Rigaud J-P (1974) Etude de la fragmentation et de la répartition des restes osseux dans un niveau d’habitat paléolithique. In: Camps-Fabrer H (ed) L’Industrie de l’Os dans la Préhistoire. Université, Marseille, pp 47–55

    Google Scholar 

  • Delpech F, Rigaud J-P (1977) Étude de la fragmentation et de la répartition des restes osseux dans un niveau d’habitat paléolithique. Société d’Etudes Rech Préhistoriques Bull Les Eyzies 26:71–81

    Google Scholar 

  • Díez JC, Fernández-jalvo Y, Rosell J, Caceres I (1999) Zooarchaeology and taphonomy of Aurora Stratum (Gran Dolina, Sierra de Atapuerca, Spain). J Hum Evol 37:623–652. https://doi.org/10.1006/jhev.1999.0346

    Article  Google Scholar 

  • Domínguez-Rodrigo M (2002) Hunting and scavenging by early humans : the state of the debate. J World Prehistory 16:1–54

    Google Scholar 

  • Domínguez-Rodrigo M, Barba R (2006) New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. J Hum Evol 50:170–194. https://doi.org/10.1016/j.jhevol.2005.09.005

    Article  Google Scholar 

  • Domínguez-Rodrigo M, de Juana S, Galán AB, Rodríguez M (2009) A new protocol to differentiate trampling marks from butchery cut marks. J Archaeol Sci 36:2643–2654. https://doi.org/10.1016/j.jas.2009.07.017

    Article  Google Scholar 

  • Efremov IA (1940) Taphonomy: new branch of paleontology. Pan-American Geol 74:81–93

    Google Scholar 

  • Elkin DC (1995) Volume density of South Amer can Camelid skeletal parts *. Int J Osteoarchaeol 5:29–37

    Google Scholar 

  • Enloe JG (1993) Ethnoarchaeology of marrow cracking: implications for the recognition of prehistoric subsistence organization. In: Hudson J (ed) From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains. Southern Illinois University, Carbondale, pp 82–100

    Google Scholar 

  • Evans FG (1961) Relation of the physical properties of bone to fractures. Instr Course Lect 18:110

    Google Scholar 

  • Fernández-Jalvo Y, Andrews P (2016) ) Atlas of Taphonomic Identifications. Springer Science+Buisness Media Dordrecht, Vertebrate Paleobiology and Paleoanthropology Series, London

  • Fisher JW (1995) Bone surface modifications in zooarchaeology. J Archaeol Method Theory 2:7–68. https://doi.org/10.1007/BF02228434

    Article  Google Scholar 

  • Follet H (2002) Caractérisation Biomécanique et Modélisation 3D par Imagerie X et IRM haute résolution de l ’ os spongieux humain : Evaluation du risque fracturaire Contexte. 2002. doi: tel-00003145

  • Galán B, Rodríguez M, de Juana S, Domínguez-Rodrigo M (2009) A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. J Archaeol Sci 36:776–784. https://doi.org/10.1016/j.jas.2008.11.003

    Article  Google Scholar 

  • García-Moreno A, Hutson JM, Villaluenga A, et al (2014) Counting sheep without falling asleep: using Gis to calculate the minimum number of skeletal elements (MNE) and other archaeozoological measures at Schöningen 13Ii-4 ‘Spear Horizon.’ In: Giligny F, Djindjian F, Costa L, S R (eds) Proceedings of the 42nd Annual Conference on Computer Applications and Quantitative Methods in Archaeology. Paris, pp 407–412

  • Gifford-Gonzalez DP (1989) Ethnographic analogues for interpreting modified bones: some cases from East Africa. In Bonnichsen, R., and Sorg, M. H. (eds.), Bone Modification, Center for the Study of the First Americans, Orono,179–246

  • Gifford-Gonzalez D (2018) An introduction to Zooarchaeology. Springer International Publishing, Cham

    Google Scholar 

  • Gonzales DG (1991) Bones are not enough: analogues, knowlege, and interpretive strategies in zooarchaeology. J Anthropol Archaeol 10:215–254

    Google Scholar 

  • Griggo C (2013) La grotte Tempiette (Entremonts le Vieux): un piège naturel à bouquetins et chamois, dantant du Mésolithique. Journées Natl l’Archéologie des musée Savoisien Actual la Rech:1–26

  • Haynes G (1982) Bone modifications and skeletal disturbances by natural agencies: studies in North America. Catholic University of America

  • Haynes G (1983) Frequencies of spiral and green-bone fractures on ungulate limb bones in modern surface assemblages. Am Antiq 48:102–114

    Google Scholar 

  • Haynes G, Stanford D (1984) On the possible utilization of Camelops by early man in North America. Quat Int 22:216–230

    Google Scholar 

  • Hill A (1976) On carnivore and weathering damage to bone. Curr Anthropol 17:335–336. https://doi.org/10.1086/201732

    Article  Google Scholar 

  • Hill A (1989) Bone modification by modem spotted hyenas. In: Bonnichsen R, Sorg M (eds) Bone Modification. Orono, Maine, pp 169–178

    Google Scholar 

  • Holen SR, Deméré TA, Fisher DC, Fullagar R, Paces JB, Jefferson GT, Beeton JM, Cerutti RA, Rountrey AN, Vescera L, Holen KA (2017) A 130,000-year-old archaeological site in southern California, USA. Nat Publ Gr 544:479–483. https://doi.org/10.1038/nature22065

    Article  Google Scholar 

  • Isaac G (1971) The diet of early man: aspects of archaeological evidence from lower and middle Pleistocene sites in Africa. World Archaeol 2:278–299. https://doi.org/10.1080/00438243.1971.9979481

    Article  Google Scholar 

  • Isaac G (1978) The food-sharing behavior of Protohuman hominids. Sci Am 238:90–108

    Google Scholar 

  • Isaac G (1983) Review of bones: ancient men and modern myths by Lewis Binford. Am Antiq 48:416–418

    Google Scholar 

  • Johnson E (1985) Current developments in bone technology. In: Advances in Archaeological Method and Theory. Elsevier, pp 157–235

  • Jones KT, Metcalfe D (1988) Bare bones archaeology: bone marrow indices and efficiency. J Archaeol Sci 15:415–423. https://doi.org/10.1016/0305-4403(88)90039-8

    Article  Google Scholar 

  • Karr LP, Outram AK (2012) Actualistic research into dynamic impact and its implications for understanding differential bone fragmentation and survivorship. J Archaeol Sci 39:3443–3449. https://doi.org/10.1016/j.jas.2012.05.013

    Article  Google Scholar 

  • Karr LP, Outram AK (2015) Bone degradation and environment: understanding, assessing and conducting archaeological experiments using modern animal bones. Int J Osteoarchaeol 25:201–212. https://doi.org/10.1002/oa.2275

    Article  Google Scholar 

  • Karr LP, Hannus AL, Outram AK (2008) Bone Marrow and Bone Grease Exploitation on the Plains of South Dakota: A New Perspective on Bone Fracture Evidence from the Mitchell Prehistoric Indian Village. South Dakota Archaeology 26: 33–63

  • Kreutzer LA (1992) Bison and deer bone mineral densities : comparisons and implications for the interpretation of archaeological faunas. 271–294

    Google Scholar 

  • Lam YM, Chen X, Pearson OM (1999) Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. Soc Am Archaeol 64:343–362. https://doi.org/10.2307/2694204

    Article  Google Scholar 

  • Leroi-Gourhan A (1952) Sur la position scientifique de l’ethnologie. Rev Philos France Let 142:506–518

    Google Scholar 

  • Lyman RL (1987) Archaeofaunas and butchery studies: a taphonomic perspective. Adv Archaeol Method Theory 10:249–337

    Google Scholar 

  • Lyman RL (1992) Anatomical considerations of utility curves in zooarchaeology. J Archaeol Sci 19:7–22. https://doi.org/10.1016/0305-4403(92)90003-L

    Article  Google Scholar 

  • Lyman LR (1994) Vertebrate taphonomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Lyman RL (2004) The concept of equifinality in taphonomy. J Taphon 2:15–26

    Google Scholar 

  • Lyman RL (2008) Quantitative paleozoology, Cambridge University Press, New York

  • Lynn KS, Fairgrieve SI (2009) Macroscopic analysis of axe and hatchet trauma in fleshed and defleshed mammalian long bones. J Forensic Sci 54:786–792. https://doi.org/10.1111/j.1556-4029.2009.01061.x

    Article  Google Scholar 

  • Madrigal TC, Holt JZ (2002) White-tailed deer meat and marrow return rates and their application to eastern woodlands archaeology. Am Antiq 67:745–759

    Google Scholar 

  • Maguire JM, Pemberton D, Collett MH (1980) The Makapansgat limeworks grey breccia: hominids, hyaenas, hystricids or hillwash? Palaeontol africana 23:75–98

    Google Scholar 

  • Mallye J, Thiébaut C, Mourre V, Costamagno S (2012) The Mousterian bone retouchers of Noisetier Cave : experimentation and identification of marks. J Archaeol Sci 39:1131–1142. https://doi.org/10.1016/j.jas.2011.12.018

    Article  Google Scholar 

  • Marean CW, Spencer LM, Blumenschine RJ, Capaldo SD (1992) Captive hyaena bone choice and destruction, the schlepp effect and olduvai archaeofaunas. J Archaeol Sci 19:101–121. https://doi.org/10.1016/0305-4403(92)90009-R

    Article  Google Scholar 

  • Marín-Arroyo AB, Margalida A (2012) Distinguishing bearded vulture activities within archaeological contexts: identification guidelines. Int J Osteoarchaeol 22:563–576. https://doi.org/10.1002/oa.1279

    Article  Google Scholar 

  • Martin H (1906) Maillets ou enclumes en os provenant de la couche moustérienne de la Quina (Charente). Bull la Soc Prehist Fr 3:155–162

    Google Scholar 

  • Martin H (1910) La Percussion osseuse et les esquilles qui en dérivent. Expérimentation Bull la Soc Prehist Fr 5:299–304

    Google Scholar 

  • Martínez G (2009) Human chewing bone surface modification and processing of small and medium prey amongst the Nukak ( foragers of the Colombian Amazon ). J Taphon 7:2012–2017

    Google Scholar 

  • Masset C, Costamagno S, Cochard D, Laroulandie V (2016) La fracturation osseuse : du fait technique à l’essai d’interprétation sociétale L’exemple de l’antilope saïga du gisement magadelenien de Saint-Germain -la-Rivière (Gironde). Bull la Société préhistorique française 113:691–712

    Google Scholar 

  • Maté-González MÁ, González-Aguilera D, Linares-Matás G, Yravedra J (2019) New technologies applied to modelling taphonomic alterations. Quat Int. https://doi.org/10.1016/j.quaint.2018.12.021

    Google Scholar 

  • Metcalfe D, Jones KT (1988) A reconsideration of animal body-part utility indices. Am Antiq 53:486–504

    Google Scholar 

  • Miller GJ (1975) Weathering cracks, fractures, splinters, and other similar natural phenomena. Lithic Technol Mak Using Stone Tools 79:211–226

    Google Scholar 

  • Moclán A, Domínguez-Rodrigo M (2018) An experimental study of the patterned nature of anthropogenic bone breakage and its impact on bone surface modification frequencies. J Archaeol Sci 96:1–13. https://doi.org/10.1016/j.jas.2018.05.007

    Article  Google Scholar 

  • Morlan RE (1979) A tsatigraphic framework for Pleistocene artifacts from Old Crow River, northern Yukon Territory. In: Humphrey RL, Stanford D (eds) Pre-Lano cultures of the Americas: paradoxes and possibilities. The Anthro, Washington D.C., pp 125–145

    Google Scholar 

  • Morlan RE (1980) Taphonomy and archaeology in the Upper Pleistocene of the northern Yukon territory: a glimpse of the peopling of the New World. Musée Natl l’Homme Collect Mercur Comm Archéologique du Canada Publ d’Archéologie Doss Ottawa 94:1–380

    Google Scholar 

  • Morlan RE (1984) Toward the definition of criteria for the recognition of artificial bone alterations 1. Quat Res 22(2):160–171

    Google Scholar 

  • Mourre V (2004) Le Debitage sur enclume au paleolithique moyen dan le sud-ouest de la France. In: Facchini F, Palma di Cesnola A, Piperno M, Peretto C (eds) BAR International Series. BAR International Series 1239, Liège, pp 29–39

  • Mullender MG, Huiskes H, Buma P (1996) Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res 14:972–979

    Google Scholar 

  • Myers TP, Voorhies MR, Corner RG (1980) Spiral fractures and bone pseudotools at paleontological sites. Am Antiq 45:483–490. https://doi.org/10.2307/279863

    Article  Google Scholar 

  • Njau JK (2012) Reading pliocene bones. Science (80- ) 335:46–47. https://doi.org/10.1126/science.1216221

    Article  Google Scholar 

  • Njau JK, Gilbert H (2016) Standardizing terms for crocodile-induced bite marks on bone surfaces in light of the frequent bone modification equifinality found to result from crocodile feeding behavior, stone. FOROST Occas Publ 3:1–13

    Google Scholar 

  • Noe-Nygaard N (1977) Butchering and marrow fracturing as a taphonomic factor in archaeological. Paleontol Soc 3:218–237

    Google Scholar 

  • Noe-Nygaard N (1989) Man-made trace fossils on bones. Hum Evol 4:461–491

    Google Scholar 

  • O’Connell JF, Marshall B (1989) Analysis of kangaroo body part transport among the Alyawara of Central Australia. J Archaeol Sci 16:393–405. https://doi.org/10.1016/0305-4403(89)90014-9

    Article  Google Scholar 

  • Oliver JS (1989) Analogues and site context: bone damages from shield trap cave (24CB91), carbon county, Montana, USA. In: Bonnichsen R (ed) Bone Modification. Center for. Orono, Maine, pp 73–89

    Google Scholar 

  • Oliver JS (1993) Carcass processing by the Hadza: bone breakage from butchery to consumption. In: Hudson J (ed) From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains. Occasional Paper No. Center for Archaeological Investigations, Southern Illinois University, Carbondale, pp 200–227

  • Outram AK (1999) A comparison of Paleo-Eskimo and medieval Norse bone fat exploitation in Western Greenland. Artic Anthropol 36:103–117

    Google Scholar 

  • Outram AK (2001) A new approach to identifying bone marrow and grease exploitation: why the “indeterminate” fragments should not be ignored. J Archaeol Sci 28:401–410. https://doi.org/10.1006/jasc.2000.0619

    Article  Google Scholar 

  • Outram AK (2002) Bone fracture and within-bone nutrients : an experimentally based method for investigating levels of marrow extraction. In: Miracle P, Milner N (eds) Consuming passions and patterns of consumption., McDonald I, Cambridge

  • Outram AK (2005) Distinguishing bone fat exploitation from other taphonomic processes: what caused the high level of bone fragmentation at the middle Neolithic site of Ajvide, Gotland? In: Mulville J, Outram AK (eds) The zooarchaeology of fats, oils, milk and dairying. Oxbow Books, Oxford, pp 32–43

    Google Scholar 

  • Parkinson JA (2018) Revisiting the hunting-versus-scavenging debate at FLK Zinj: a GIS spatial analysis of bone surface modifications produced by hominins and carnivores in the FLK 22 assemblage, Olduvai Gorge, Tanzania. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2018.06.044

    Google Scholar 

  • Patou-Mathis M (1985) La fracturation des os longs de mammifères: élaboration d’un lexique et d’une fiche type. Artefacts 1:11–22

    Google Scholar 

  • Pei W (1938) Le rôle des animaux et des causes naturelles dans la cassure des os. Geol Surv China 7:1–25

    Google Scholar 

  • Pei WZ (1939) The Upper Cave Industry of Choukoutien, Peking Geological Survey of China, Beijing

  • Peretto C, Anconetani P, Crovetto C et al (1996) Approccio sperimentale alla comprensione delle attività di sussistenza condotte nel sito di Isernia La Pineta (Molise-Italia). La fratturazione intenzionale. In: Peretto C (ed) I reperti paleontologici del giacimento paleolitico di Isernia La Pineta. IRESMO, Co., Isernia, pp 187–452

    Google Scholar 

  • Pickering TR, Egeland CP (2006) Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans. J Archaeol Sci 33:459–469. https://doi.org/10.1016/j.jas.2005.09.001

    Article  Google Scholar 

  • Pickering TR, Domínguez-Rodrigo M, Heaton JL et al (2013) Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania. J Archaeol Sci 40:1295–1309. https://doi.org/10.1016/j.jas.2012.09.025

    Article  Google Scholar 

  • Poplin F (1973) Interprétation ethnologique des vestiges animaux. In: Cujas (ed) L’homme, recueil d’études en hommage à A. Leroi-Gourhan, Paris, pp 345–354

    Google Scholar 

  • Poplin F (1978) Aperçu sur la grande faune pléistocène du gisement paléolithique de Biache-Saint-Vaast (Pas-de-Calais). Bull l’Association française Pour l’Étude du Quat 15:60–65

    Google Scholar 

  • Potts R, Shipman P (1981) Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania. Nature 291:577–580

    Google Scholar 

  • Ritchie RO, Buehler MJ, Hansma P (2009) Plasticity and toughness in bone. Phys Today 62:41–47. https://doi.org/10.1063/1.3156332

    Article  Google Scholar 

  • Rovira Formento M (2010) Aproximación experimental a la explotación de huesos largos de grandes animales para la recuperación de la médula ósea y su aplicación arqueológica al registro faunístico del Nivel 3 colluvio de Isernia La Pineta (Molise , Italia). Arqueologia del Quaternari i Evolució Humana

  • Rovira Formento M, Caceres I (2013) Aproximación experimental a la explotación medular de huesos largos de grandes animales y su aplicación arqueológicas al Nivel 3″ colluvio de Isernia La Pineta (Molise, Italia). In: Palomo A, Piqué R, Terradas-Batlle X (eds) Experimentación en arqueología: estudio y difusión del pasado. Museu d’Arqueologia de Catalunya, Barcelona, pp 147–155

    Google Scholar 

  • Saladié P, Huguet R, Díez C, Rodríguez-Hidalgo A, Cáceres I, Vallverdú J, Rosell J, Bermúdez de Castro JM, Carbonell E (2011) Carcass transport decisions in Homo antecessor subsistence strategies. J Hum Evol 61:425–446. https://doi.org/10.1016/j.jhevol.2011.05.012

    Article  Google Scholar 

  • Saladié P, Rodríguez-Hidalgo A, Díez C et al (2013) Range of bone modifications by human chewing. J Archaeol Sci 40:380–397. https://doi.org/10.1016/j.jas.2012.08.002

    Article  Google Scholar 

  • Selvaggio MM (1994) Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications. J Hum Evol 27:215–228. https://doi.org/10.1006/jhev.1994.1043

    Article  Google Scholar 

  • Shipman P (1981) Applications of scanning electron microscopy to taphonomic problems. Ann N Y Acad Sci 376:357–385. https://doi.org/10.1111/j.1749-6632.1981.tb28179.x

    Article  Google Scholar 

  • Shoshani J, Lowenstein JM, Walz DA, Goodman M (1985) Paleontological society Proboscidean origins of mastodon and woolly mammoth demonstrated immunologically. Paleobiology 11:429–437

    Google Scholar 

  • Speth JD (1989) Early hominid hunting and scavenging: the role of meat as an energy source. J Hum Evol 18:329–343. https://doi.org/10.1016/0047-2484(89)90035-3

    Article  Google Scholar 

  • Speth JD, Meignen L, Bar-Yosef O, Goldberg P (2012) Spatial organization of middle Paleolithic occupation X in Kebara cave (Israel): concentrations of animal bones. Quat Int 247:85–102. https://doi.org/10.1016/j.quaint.2011.03.001

    Article  Google Scholar 

  • Stavrova T, Borel A, Daujeard C, Vettese D (2019) A GIS based approach to long bone breakage patterns derived from marrow extraction. PLoS One 14:e0216733. https://doi.org/10.1371/journal.pone.0216733

    Article  Google Scholar 

  • Symes SA, L’Abbé EN, Stull KE et al (2014) Taphonomy and the timing of bone fractures in trauma analysis. In: Pokines JT, Symes SA (eds) . Manual of forensic taphonomy, Boca Raton, pp 341–365

    Google Scholar 

  • Teleki G (1975) Primate subsistence patterns : collector- predators and gatherer-hunters. J Hum Evol:125–184

    Google Scholar 

  • Thiébaut C, Claud É, Costamagno S et al (2009) Des traces et des hommes. Les Nouv l’Archéologie 118:49–55. https://doi.org/10.4000/nda.934

    Article  Google Scholar 

  • Thompson JC, Carvalho S, Marean CW, Alemseged Z (2019) Origins of the human predatory pattern: the transition to large-animal exploitation by early Hominins. Curr Anthropol 60:1–23. https://doi.org/10.1086/701477

    Article  Google Scholar 

  • Turner A (1983) Taphonomic reconstructions of human violence and cannibalism based on mass burials in the American Southwest. In: Carnivores, Human Scavengers & Predators: a question of bone technology. The Archaeological Association of the University of Calgary, Calgary, pp 219–240

  • Vettese, D (2014) Le traitement des carcasses d’ongulés chez les Néanderthaliens de l’Abri du Maras (Ardèche, MIS4)/individualisme ou poids des traditions? Master thesis Erasmus Mundus: Quaternaire et Préhistoire. Muséum national d’Histoire naturelle: Paris p. 106

  • Vettese D, Daujeard C, Blasco R et al (2017) Neandertal long bone breakage process: standardized or random patterns? The example of Abri du Maras (southeastern France, MIS 3). J Archaeol Sci Reports 13:151–163. https://doi.org/10.1016/j.jasrep.2017.03.029

    Article  Google Scholar 

  • Villa P, Mahieu E (1991) Breakage pattern of human long bones. J Hum Evol 21:27–48

    Google Scholar 

  • Villa P, Courtin J, Helmer D et al (1986) Un cas de cannibalisme au Néolithique. Gall Préhistoire 29:143–171. https://doi.org/10.3406/galip.1986.2243

    Article  Google Scholar 

  • Voormolen B (2008) Ancient Hunters. University of Leiden, Modern Butchers

    Google Scholar 

  • Wang R, Gupta HS (2011) Deformation and fracture mechanisms of bone and nacre. Annu Rev Mater Res 41:41–73. https://doi.org/10.1146/annurev-matsci-062910-095806

    Article  Google Scholar 

  • Washburn SL (1957) Australopithecines : The Hunters or the Hunted ? Author ( s ): S . L . Washburn Source : American Anthropologist , New Series , Vol . 59 , No . 4 ( Aug ., 1957 ), pp . 612–614 Published by : Wiley on behalf of the American Anthropological Association Stab. Am Anthropol 59:612–614

    Google Scholar 

  • Weigelt J (1927) Über Biostratonomie. Der Geol 42:1069–1076

    Google Scholar 

  • Weiner S, Wagner HD (1998) THE MATERIAL BONE: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298. https://doi.org/10.1146/annurev.matsci.28.1.271

    Article  Google Scholar 

  • White T (1992) Prehistoric cannibalism at Mancos 5MTUMR-2346. Princeton, Oxford

    Google Scholar 

  • Wolberg DL (1970) The hypothesized osteodontokeratic culture of the australopithecinae: a look at the evidence and the opinions. Curr Anthropol 11:23. https://doi.org/10.1086/201087

    Article  Google Scholar 

  • Young RW (2003) Evolution of the human hand : the role of throwing and clubbing. J Anat 202:165–174

    Google Scholar 

  • Yravedra J, Maté-González MÁ, Palomeque-González JF et al (2017) A new approach to raw material use in the exploitation of animal carcasses at BK (upper bed II, Olduvai Gorge, Tanzania): a micro-photogrammetric and geometric morphometric analysis of fossil cut marks. Boreas. https://doi.org/10.1111/bor.12224

    Google Scholar 

  • Yravedra J, Aramendi J, Maté-González MÁ et al (2018) Differentiating percussion pits and carnivore tooth pits using 3D reconstructions and geometric morphometrics. PLoS One 13:1–18. https://doi.org/10.1371/journal.pone.0194324

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and the anonymous reviewers for their constructive remarks on this manuscript. The English manuscript was edited by L. Byrne, an official translator and native English speaker. We are grateful to the Fondation Nestlé.

Funding

This project was supported by the Fondation Nestlé France (SJ 671–16) (https://fondation.nestle.fr/); the Centre d’Information des Viandes – Viande, sciences et société (SJ 334–17); and the Muséum national d’Histoire naturelle. R. Blasco develops her work within the Spanish MINECO/FEDER projects CGL2015–68604-P, and the Generalitat de Catalunya-AGAUR projects CLT009/18/00055 and 2017 SGR 836. I. Cáceres received financial support of the Spain Government (project n° PGC2018–093925-B-C32 (MICINN-Feder) and the 2017 SGR1040 (AGAUR) and the 2018PFR-URV-B2–91 (URV) projects. Research at IPHES is framed in the CERCA program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Vettese.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vettese, D., Blasco, R., Cáceres, I. et al. Towards an understanding of hominin marrow extraction strategies: a proposal for a percussion mark terminology. Archaeol Anthropol Sci 12, 48 (2020). https://doi.org/10.1007/s12520-019-00972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-019-00972-8

Keywords

Navigation