Skip to main content
Log in

Modeling tuberous sclerosis complex with human induced pluripotent stem cells

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder with a birth incidence of 1:6000 in the United States that is characterized by the growth of non-cancerous tumors in multiple organ systems including the brain, kidneys, lungs, and skin. Importantly, TSC is also associated with significant neurological manifestations including epilepsy, TSC-associated neuropsychiatric disorders, intellectual disabilities, and autism spectrum disorder. Mutations in the TSC1 or TSC2 genes are well-established causes of TSC, which lead to TSC1/TSC2 deficiency in organs and hyper-activation of the mammalian target of rapamycin signaling pathway. Animal models have been widely used to study the effect of TSC1/2 genes on the development and function of the brain. Despite considerable progress in understanding the molecular mechanisms underlying TSC in animal models, a human-specific model is urgently needed to investigate the effects of TSC1/2 mutations that are unique to human neurodevelopment.

Data sources

Literature reviews and research articles were published in PubMed-indexed journals.

Results

Human-induced pluripotent stem cells (iPSCs), which capture risk alleles that are identical to their donors and have the capacity to differentiate into virtually any cell type in the human body, pave the way for the empirical study of previously inaccessible biological systems such as the developing human brain.

Conclusions

In this review, we present an overview of the recent progress in modeling TSC with human iPSC models, the existing limitations, and potential directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data and articles supporting this review are available within the article in the reference section.

References

  1. Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035.

    Article  PubMed  Google Scholar 

  2. Northrup H, Aronow ME, Bebin EM, Bissler J, Darling TN, de Vries PJ, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol. 2021;123:50–66.

    Article  PubMed  Google Scholar 

  3. Ihrie RA, Henske EP. Modeling tuberous sclerosis with organoids. Science. 2022;375:382–3.

    Article  CAS  PubMed  Google Scholar 

  4. Blair JD, Hockemeyer D, Bateup HS. Genetically engineered human cortical spheroid models of tuberous sclerosis. Nat Med. 2018;24:1568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brigo F, Lattanzi S, Trinka E, Nardone R, Bragazzi NL, Ruggieri M, et al. First descriptions of tuberous sclerosis by Désiré-Magloire Bourneville (1840–1909). Neuropathology. 2018;38:577–82.

    Article  PubMed  Google Scholar 

  6. Gomez M, Sampson J, Whittemore V. The tuberous sclerosis complex. Oxford: Oxford University Press; 1999.

    Book  Google Scholar 

  7. Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:243–54.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krueger DA, Northrup H, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49:255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koene LM, Niggl E, Wallaard I, Proietti-Onori M, Rotaru DC, Elgersma Y. Identifying the temporal electrophysiological and molecular changes that contribute to TSC-associated epileptogenesis. JCI Insight. 2021;6:e150120.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dalal JS, Winden KD, Salussolia CL, Sundberg M, Singh A, Pham TT, et al. Loss of Tsc1 in cerebellar Purkinje cells induces transcriptional and translation changes in FMRP target transcripts. Elife. 2021;10:e67399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, et al. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun. 2021;12:6084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bystron I, Blakemore C, Rakic P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci. 2008;9:110–22.

    Article  CAS  PubMed  Google Scholar 

  13. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146:18–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. 2017;22:820–35.

    Article  CAS  PubMed  Google Scholar 

  15. Packer A. Neocortical neurogenesis and the etiology of autism spectrum disorder. Neurosci Biobehav Rev. 2016;64:185–95.

    Article  PubMed  Google Scholar 

  16. Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2015;20:361–8.

    Article  CAS  PubMed  Google Scholar 

  17. Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, et al. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol Autism. 2020;11:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zucco AJ, Pozzo VD, Afinogenova A, Hart RP, Devinsky O, D’Arcangelo G. Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Mol Cell Neurosci. 2018;92:149–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Cao J, Chen M, Li J, Sun Y, Zhang Y, et al. Abnormal neural progenitor cells differentiated from induced pluripotent stem cells partially mimicked development of TSC2 neurological abnormalities. Stem Cell Reports. 2017;8:883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hisatsune C, Shimada T, Miyamoto A, Lee A, Yamagata K. Tuberous sclerosis complex (TSC) inactivation increases neuronal network activity by enhancing Ca2+ influx via L-type Ca2+ channels. J Neurosci. 2021;41:8134–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Catlett TS, Onesto MM, McCann AJ, Rempel SK, Glass J, Franz DN, et al. RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat Commun. 2021;12:2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dooves S, van Velthoven AJH, Suciati LG, Heine VM. Neuron-glia interactions in tuberous sclerosis complex affect the synaptic balance in 2D and organoid cultures. Cells. 2021;10:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alsaqati M, Heine VM, Harwood AJ. Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation. Mol Autism. 2020;11:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winden KD, Sundberg M, Yang C, Wafa SMA, Dwyer S, Chen PF, et al. Biallelic mutations in TSC2 lead to abnormalities associated with cortical tubers in human iPSC-derived neurons. J Neurosci. 2019;39:9294–305.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ebrahimi-Fakhari D, Saffari A, Wahlster L, Di Nardo A, Turner D, Lewis TL Jr, et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 2016;17:1053–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller DR, Schaffer DK, Neely MD, McClain ES, Travis AR, Block FE 3rd, et al. A bistable, multiport valve enables microformulators creating microclinical analyzers that reveal aberrant glutamate metabolism in astrocytes derived from a tuberous sclerosis patient. Sens Actuators B Chem. 2021;341:129972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dooves S, Nadadhur AG, Gasparotto L, Heine VM. Co-culture of human stem cell derived neurons and oligodendrocyte progenitor cells. Bio Protoc. 2019;9:e3350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nadadhur AG, Alsaqati M, Gasparotto L, Cornelissen-Steijger P, van Hugte E, Dooves S, et al. Neuron-glia interactions increase neuronal phenotypes in tuberous sclerosis complex patient iPSC-derived models. Stem Cell Reports. 2019;12:42–56.

    Article  PubMed  Google Scholar 

  29. Sundberg M, Tochitsky I, Buchholz DE, Winden K, Kujala V, Kapur K, et al. Purkinje cells derived from TSC patients display hypoexcitability and synaptic deficits associated with reduced FMRP levels and reversed by rapamycin. Mol Psychiatry. 2018;23:2167–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hernandez JOR, Wang X, Vazquez-Segoviano M, Lopez-Marfil M, Sobral-Reyes MF, Moran-Horowich A, et al. A tissue-bioengineering strategy for modeling rare human kidney diseases in vivo. Nat Commun. 2021;12:6496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eichmüller OL, Corsini NS, Vértesy A, Morassut I, Scholl T, Gruber VE, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375:eabf5546.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron. 2013;78:510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants (Basel). 2019;8:121.

    Article  CAS  PubMed  Google Scholar 

  34. Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, et al. Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology. 2008;28:577–90.

    Article  PubMed  Google Scholar 

  35. Ercan E, Han JM, Di Nardo A, Winden K, Han MJ, Hoyo L, et al. Neuronal CTGF/CCN2 negatively regulates myelination in a mouse model of tuberous sclerosis complex. J Exp Med. 2017;214:681–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang M, Liu L, He X, Wang H, Lin W, Wang H, et al. Regulation of PERK-eIF2α signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun. 2016;7:12185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang Y, Zhou Y, Li Y, Han Y, Xu J, Niu W, et al. A human forebrain organoid model of fragile X syndrome exhibits altered neurogenesis and highlights new treatment strategies. Nat Neurosci. 2021;24:1377–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raj N, McEachin ZT, Harousseau W, Zhou Y, Zhang F, Merritt-Garza ME, et al. Cell-type- specific profiling of human cellular models of fragile X syndrome reveal PI3K-dependent defects in translation and neurogenesis. Cell Rep. 2021;35:108991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brighi C, Salaris F, Soloperto A, Cordella F, Ghirga S, de Turris V, et al. Novel fragile X syndrome 2D and 3D brain models based on human isogenic FMRP-KO iPSCs. Cell Death Dis. 2021;12:498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Jong JO, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Modafferi S, Zhong XL, Kleensang A, Murata Y, Fagiani F, Pamies D, et al. Gene-environment interactions in developmental neurotoxicity: a case study of synergy between chlorpyrifos and CHD8 knockout in human BrainSpheres. Environ Health Perspect. 2021;129:77001.

    Article  CAS  PubMed  Google Scholar 

  42. Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry. 2021;26:7560–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell. 2021;28:1362-79.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Esk C, Lindenhofer D, Haendeler S, Wester RA, Pflug F, Schroeder B, et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science. 2020;370:935–41.

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Li Z, Sievert D, Smith DEC, Mendes MI, Chen DY, et al. Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly. Nat Commun. 2020;11:4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schafer DP, Stevens B. Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol. 2015;7:a020545.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278-93.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang B, Zou J, Han L, Beeler B, Friedman JL, Griffin E, et al. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia. 2018;59:1796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang B, Zou J, Han L, Rensing N, Wong M. Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia. 2016;57:1317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci. 2019;13:582.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, et al. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell. 2021;28:2153-66.e6.

    Article  CAS  PubMed  Google Scholar 

  52. Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports. 2021;16:1923–37.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bodnar B, Zhang Y, Liu J, Lin Y, Wang P, Wei Z, et al. Novel scalable and simplified system to generate microglia-containing cerebral organoids from human induced pluripotent stem cells. Front Cell Neurosci. 2021;15:682272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ormel PR, de Sá RV, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pasca SP. Assembling human brain organoids. Science. 2019;363:126–7.

    Article  CAS  PubMed  Google Scholar 

  57. Bagley JA, Reumann D, Bian S, Levi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods. 2017;14:743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell. 2017;21:383-98.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12:4730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118–26.

    Article  PubMed  Google Scholar 

  61. Pasteuning-Vuhman S, de Jongh R, Timmers A, Pasterkamp RJ. Towards advanced iPSC-based drug development for neurodegenerative disease. Trends Mol Med. 2021;27:263–79.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A. 2017;114:E2293–302.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the support from the following funding sources: NIH grants R01AG065611, R01MH121102, R21MH123711, and Department of Defense grant W81XWH1910353 to ZW.

Funding

This work was supported by the following funding sources: NIH grants (Nos. R01AG065611, R01MH121102, R21MH123711), and Department of Defense grant (No. W81XWH1910353 to ZW).

Author information

Authors and Affiliations

Authors

Contributions

NW wrote the manuscript. SB helped with the revision. WZ contributed to manuscript revision, read, and approved the submitted version.

Corresponding author

Correspondence to Zhexing Wen.

Ethics declarations

Ethical approval

Not needed.

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article. The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, W., Siciliano, B. & Wen, Z. Modeling tuberous sclerosis complex with human induced pluripotent stem cells. World J Pediatr 20, 208–218 (2024). https://doi.org/10.1007/s12519-022-00576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-022-00576-8

Keywords

Navigation