Skip to main content
Log in

Spatial and temporal distribution patterns of Precambrian mafic dyke swarms in northern Mauritania (West African craton): analysis and results from remote-sensing interpretation, geographical information systems (GIS), Google Earth ™ images, and regional geology

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

We used remote sensing, geographical information systems, Google Earth™ images, and regional geology in order to (i) improve the mapping of linear structures and understand the chronology of different mafic dyke swarms in the Ahmeyim area that belongs to the Archean Tasiast-Tijirit Terrane of the Reguibat Shield, West African craton, NW Mauritania. The spatial and temporal distributions with the trends of the dyke swarms provide important information about geodynamics. The analysis of the mafic dyke swarms map and statistical data allow us to distinguish four mafic dyke swarm sets: a major swarm trending NE-SW to NNE-SSW (80%) and three minor swarms trending EW to ENE-WSW (9.33%), NW-SE to WNW-ESE (9.06%), and NS (1.3%). The major swarms extend over 35 km while the minor swarms do not exceed 13 km. The Google Earth™ images reveal relative ages through crossover relationships. The major NE-SW to NNE-SSW and the minor NS swarms are the oldest generations emplaced in the Ahemyim area. The NW-SE-oriented swarm dykes which are cutting the two former swarms are emplaced later. The minor E-W to WSW-ENE swarms are probably the youngest. A precise U-Pb baddeleyite age of 2733 ± 2 Ma has been obtained for the NNE-SSW Ahmeyim Great Dyke. This dyke is approximately 1500 m wide in some zone and extends for more than 150 km. The distinct mafic dyke swarms being identified in this study can potentially be linked with coeval magmatic events on other cratons around the globe to identify reconstructed LIPs and constrain continental reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhab SS, Hassan MA (2014) Lineament automatic extraction analysis for Galal Badra river basin using Landsat 8 satellite image. Iraqi J Phys 12:44–55

    Google Scholar 

  • Adiri Z, El Harti A, Jellouli A, Lhissou R, Maacha L, Azmi M, Zouhair M, Bachaoui EM (2017) Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: a case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv Space Res 60:2355–2367. https://doi.org/10.1016/j.asr.2017.09.006

  • Aïfa T, Lefort JP, Drareni A (2001) New Paleopoles at 1.4–1.9 Ga from dyke swarms of the West African Craton: paleomagnetic contribution to the accretionary phase of Rodinia. Gondwana Res 4:559–560

    Article  Google Scholar 

  • Akram MS, Mirza K, Zeeshan M, Imran A (2019) 2019 Correlation of tectonics with geologic lineaments interpreted from remote sensing data for Kandiah Valley, Khyber-Pakhtunkhwa, Pakistan. J Geol Soc India 93:607–613. https://doi.org/10.1007/s12594-019-1224-7

    Article  Google Scholar 

  • Amara M, Benmammar A, Ouadahi S, Ernest RE, Bendaoud A, Jessell M, Djemai S, Hamoudi M (2016) Mapping the dyke swarms of the Eglab-Yetti region, southwestern Algeria. Acta Geol Sin (Engl Ed) 90(S1):51–51. https://doi.org/10.1111/1755-6724.12882

    Article  Google Scholar 

  • Amri K, Mahjoub Y, Guergour L (2011) Use of Landsat 7 ETM+ for lithological and structural mapping of Wadi Afara Heouine area (Tahifet-Central Hoggar, Algeria). Arab J Geosci 4(7):1273–1287. https://doi.org/10.1007/s12517-010-0180-8

    Article  Google Scholar 

  • Ba HM, Jaffal M, Lo K, Youbi N, Dahmada EM, Ibouh H, Boumehdi MA, Aïfaf T, Amara M, Jessell M, Ernst RE, Bensalah MK, Söderlund U (2020) Mapping mafic dyke swarms, structural features, and hydrothermal alteration zones in Atar, Ahmeyim and Chami areas (Reguibat shield, northern Mauritania) using high-resolution aeromagnetic and gamma-ray spectrometry data. J Afr Earth Sci 163:103749. https://doi.org/10.1016/j.jafrearsci.2019.103749

  • Baghdadi N, Grandjean G, Lahondère D, Paillou P, Lasne Y (2005) The contribution of radar satellite imagery to geological exploration in arid areas. Compt Rendus Geosci 337(8):719–728. https://doi.org/10.1016/j.crte.2005.03.003

    Article  Google Scholar 

  • Baratoux L, Söderlund U, Ernst RE, Roever E, Jessel MW, Kamo LS, Naba S, Perrouty S (2018) New U–Pb Baddeleyite ages of mafic dyke swarms of the West African and Amazonian Cratons: implication for their configuration in supercontinents through time. Dyke swarms of the world: a modern perspective. 263–314. https://doi.org/10.1007/978-981-13-1666-1_7

  • Barrère L (1967) Le groupe précambrien de l’Amsaga entre Atar et Akjoujt (Mauritanie). Étude d’un métamorphisme profond et de ses relations avec la migmatisation. Thèse Clermond-Ferrand, 1965 Mémoires de Bureau de Recherche Géologiques et Minières, Fr., No 42, 275p

  • Berraki F, Bendaoud A, Brahimi B, Djemai S, Kienast JR, Deroin JP, Ouzegane K (2012) Cartographie et étude Pétrographique et Minéralogique des dykes de dolerites de l’In Ouzzal (Hoggar Occidental, Algérie). Photo-Interpretation. Eur J Appl Remote Sens N°2012/1–2:26–68

  • Bessoles B (1977) Géologie de l’Afrique. Le craton Ouest Africain. Mémoires de Bureau de Recherches Géologiques et Minières, 88, 402p

  • Biémi J, Gwyyn QHJ, Deslandes S, Jourda JP (1991) Géologie et réseaux de linéaments, région du bassin versant de la Marahoué, Côte d’Ivoire : cartographie à l’aide des données Landsat-TM et du champ magnétique total. Télédétection et gestion des ressources. Vol. vii, Paul Gagnon (éd), Association québécoise de télédétection. 134–145

  • Black R, Latouche L, Liégeois JP, Caby R, Bertrand JM (1994) Pan-African displaced terranes in the Touareg shield (Central Sahara). Geology 22(7):641–644

    Article  Google Scholar 

  • Blanchot A (1955) Le Précambrien de Mauritanie occidentale (esquisse géologique). Thèse Doct. Sci., Univ. Nancy, 308p

  • Bronner G, Chauvel JJ, Triboulet D (1985) Archean metamorphic iron formations and associated basic rocks of Lebzenia (Tasiast, South-Western Reguibat shield, Mauritania). Sci Geol Bull Strasbourg 38:337–357

    Article  Google Scholar 

  • Cetin M (2015a) Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. Int J Sust Dev World Ecol 22(5):420–424

    Google Scholar 

  • Cetin M (2015b) Determining the bioclimatic comfort in Kastamonu City. Environ Monit Assess 187(10):640. https://doi.org/10.1007/s10661-015-4861-3

    Article  Google Scholar 

  • Cetin M, Sevik H (2015) Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environ Monit Assess 188(1) http://link.springer.com/article/10.1007/s10661-015-5064-7

  • Cetin M, Sevik H (2016) Assessing potential areas of ecotourism through a case study in Ilgaz Mountain National Park, InTech, Chapter 5, Eds:Leszek Butowski, 190, ISBN:978-953-51-2281-4, 81-110

  • Cetin M, Adiguzel F, Kaya O, Sahap A (2016) Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ Dev Sustain 20(1):361–375. https://doi.org/10.1007/s10668-016-9885-5

    Article  Google Scholar 

  • Cetin M, Onac AK, Sevik H, Canturk U, Akpinar H (2018a) Chronicles and geoheritage of the ancient Roman city of Pompeiopolis: a landscape plan. Arab J Geosci 11(24). https://doi.org/10.1007/s12517-018-4170-6

  • Cetin M, Sevik H, Canturk U, Cakir C (2018b) Fresenius environmental. Evaluation of the recreational potential of Kutahya urban forest. Fresenius Environ Bull 27(5):2629–2634

    Google Scholar 

  • Cetin M, Zeren I, Sevik H, Cakir C, Akpinar H (2018c) A study on the determination of the natural park’s sustainable tourism potential. Environ Monit Assess 190(3):167. https://doi.org/10.1007/s10661-018-6534-5

    Article  Google Scholar 

  • Chitroub S (2003) Modelisation, Analyse, classification et fusion d’Images de Télédétection Multisoures optiques et Radars. Thèse de Doctorat d’Etat, Faculté d’Electronique et Informatique U.S.T.H.B. Alger, N° d’ordre : 01/2003-E/EL, Février 2003

  • Chitroub S (2004) Analyse en Composantes Principales d’images optiques de Télédétection. Approche Neuronale. CARI 2004-Hammamet: 51–58p

  • Dillon WP, Sougy JMA (1974) Geology of West Africa and Cape Verde Islands. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, vol 2. The North Atlantic, Plenum, London, pp 315–390

    Chapter  Google Scholar 

  • Dosso L, Phillippe V, Bertranà S, Alain B (1979) Age précambrien de dolérites de la Dorsale Réguibat (Mauritanie). C R Acad Sci Paris 288:739–742

    Google Scholar 

  • Eddahby L, Popov M, Stankevich S, Kozlova A, Svideniuk M O, Mezzane D, Lukyanchuk I, Larabi A, Ibouh H (2019a) Assessing vegetation structural changes in oasis agro-ecosystems using Sentinel-2 image time series: case study for Drâa-Tafilalet region Morocco. Archives of ISPRS. XLII/W12: 69–73. https://doi.org/10.5194/isprs-archives-XLII-4-W12-69-2019

  • Eddahby L, Kozlova A, Popov M, Lubskiy NS, Mezzane D, Lukyanchuk I, Larabi A, Ibouh H (2019b) Synergetic use of Sentinel-1 and Sentinel-2 data for extraction of built-up area in a Rocky Desert oasis, example for Draa Tafilalt: south-east of Morocco. Archives of ISPRS. XLII/W12: 65–68. https://doi.org/10.5194/isprs-archives-XLII-4-W12-65-2019

  • El-Alaoui EMH, Ibouh H, Bachnou A, Babram AM, El Harti A (2016) Mapping and analysis of geological fractures extracted by remote sensing on Landsat TM image, example of the Imilchil-Tounfite area (Central High Atlas, Morocco). Estud Geol 72(2):1–13. https://doi.org/10.3989/egeol.42328.394

    Article  Google Scholar 

  • Fezaan N, Liégeois JP, Abdallah N, Bruguier O, De Waele B, Ouabadi A (2019) The 600 Ma-old pan-African Magmatism in: the In Ouzzal Terrane (Tuareg shield, Algeria): witness of the Metacratonisation of a rigid block. In: Bendaoud A, Hamimi Z, Hamoudi M, Djemai S, Zoheir B (eds) The geology of the Arab world--an overview. Springer Geology, pp 109–148. https://doi.org/10.1007/978-3-319-96794-3_3

  • Gomez C (2004) Potentiels des données de télédétection multisources pour la cartographie géologique : Application à la région de Rehoboth (Namibie). Traitement du Signal et de l’image. Thèse Université Claude Bernard-Lyon; 210p

  • Grandjean G, Paillou P, Baghdadi N, Haggy E, August T, Lasne Y (2006) Surface and subsurface structural mapping using low frequency radar: a synthesis of the Mauritanian and Egyptian experiments. J Afr Earth Sci 44(2):220–228. https://doi.org/10.1016/j.jafrearsci.2005.10.015

    Article  Google Scholar 

  • Halls HC (2010) The Reguibat Shield, Mauritania: a dyke swarm bonanza. Poster presented at the 6th International Dyke Conference February 4–7, 2010 Varanasi, India (Dyke Swarms: Keys for Geodynamic Interpretation). Also presented as the Large Igneous Provinces “Lip of the Month” for February 2010. http://www.largeigneousprovinces.org/10feb

  • Han L, Liu Z, Ning Y, Zhao Z (2018) Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Adv Space Res 62:2480–2493. https://doi.org/10.1016/j.asr.2018.07.030

    Article  Google Scholar 

  • Himyari SM, Hoepffner C, Benzakour M, El Hadani D (2002) Etude structurale du Haut Atlas Oriental (Maroc) à l’aide de l’analyse linéamentaire des images HRV (XS) de SPOT. Publié sous l’enseigne Editions Scientifiques GB. Télédétection. 2(4):243–253

    Google Scholar 

  • Ibrahim U, Mutua F (2014) Lineament extraction using Landsat 8 (OLI) in Gedo, Somalia. Int J Sci Res 3:291–296

    Google Scholar 

  • Jessell MW, Santoul J, Baratoux L, Youbi N, Ernst RE, Metelka V, Miller J, Perrouty S (2015) An updated map of West African mafic dykes. J Afr Earth Sci 112(B):440–450

    Article  Google Scholar 

  • Kassou A, Essahlaoui A, Aissa M (2012) Extraction of structural lineaments from satellite images Landsat 7 ETM+ of Tighza Mining District (Central Morocco). Res J Earth Sci 4(2):44–48. https://doi.org/10.5829/idosi.rjes.2012.4.2.1110

    Article  Google Scholar 

  • Kaya E, Agca M, Adiguzel F, Cetin M (2018) Spatial data analysis with R programming for environment. Hum Ecol Risk Assess Int J:1–10. https://doi.org/10.1080/10807039.2018.1470896

  • Key RM (2003) 1:200000 geological map of the Chami Sheet (2015). Mines Industrie, Government of Mauritania, Nouakchott

  • Key RM, Loughlin SC, Horstwood MSA, Gillespie M, Pitfield PEJ, Henney PJ, Crowley QG, Del Rio M (2008) Two Mesoarchaean terranes in the Reguibat shield of NW Mauritania. In: Ennih N, Liégeois J-P (eds) Boundaries of the West African Craton, vol 297. Special Publication of the Geological Society, London, pp 33–52

    Google Scholar 

  • Lachaine G (1999) Structures géologiques et linéaments, Beauce (Québec) : apport de la télédétection. Mémoire pour l’obtention du grade de Maître ès-Sciences (M. Sc) en géographie, cheminement Télédétection, Faculté des Lettres et des Sciences Humaines, Université de Sherbrooke. 0–612–61778-5:105p

  • Lahondère D, Thiéblemont D, Goujou JC, Roger J, Moussine PA, Le Métour J, Cocherie A, Guerrot C (2003) Notice explicative des cartes géologiques et gîtologiques à 1/200000 et 1/500000 du Nord de la Mauritanie. Volume 1; DMG. Ministère des Mines et de l’Industrie, Nouakchott

  • Liégeois JP, Latouche L, Boughrara M, Navez J, Guiraud M (2003) The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. J Afr Earth Sci 37(3–4):161–190. https://doi.org/10.1016/j.jafrearsci.2003.05.004

    Article  Google Scholar 

  • Moore G, Frederick W (1986) Objective procedure for lineament enhancement and extraction. Photogramm Eng Remote Sens 49:461–647

    Google Scholar 

  • Mwaniki MW, Moeller MS, Schellmann G (2015) A comparison of Landsat 8 (OLI) and Landsat (ETM+) in mapping geology and visualizing lineaments: a case study of central region Kenya. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-7/W3: 897–903

  • Ndong FB, Ntomba SM, Messi EJ, Okia D, Mvondo JO (2014) Définition structurale des linéaments par traitement d’image satellitaire : cas du massif de Ngovayang (Sud Cameroun). Afrique Sci 10(3):107–112 ISSN 1813-548X, http://www.afriquescience.info

    Google Scholar 

  • Ni N, Chen N, Ernst RE, Yang S, Chen J (2018) Semi-automatic extraction and mapping of dyke swarms based on multi-resolution remote sensing images: applied to the dykes in the Kuluketage region in the northeastern Tarim block. Precambrian Res 329:262–272. https://doi.org/10.1016/j.precamres.2018.05.020

    Article  Google Scholar 

  • Nkono C, Liégeois JP, Demaiffe D (2018) Relationships between structural lineaments and Cenozoic volcanism, Tibesti swell, Saharan metacraton. J Afr Earth Sci 145:274–283. https://doi.org/10.1016/j.jafrearsci.2018.05.022

    Article  Google Scholar 

  • Pinet P, Shevchenko V, Chevrel S, Daydou Y, Rosemberg C (2000) Local and regional lunar regolith characteristics at Reiner gamma formation: optical and spectroscopic properties from Clementine and Earth-based data. J Geophys Res 105:9457–9475

    Article  Google Scholar 

  • Pitfield PEJ, Key RM, Waters CN, Hawkins MPH, Schofield DI, Loughlin S, Barnes RP (2004) Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Sud de la Mauritanie. Volume 1 –géologie. DMG, Ministère des Mines et de l’Industrie, Nouakchott

  • Pour AB, Hashim M (2014) Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt, Peninsular Malaysia. Int J Image Data Fusion 6(2):170–188. https://doi.org/10.1080/19479832.2014.985619

    Article  Google Scholar 

  • Pour AB, Hashim M (2018) Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. J Taibah Univ Sci 9(2) 2015. https://doi.org/10.1016/j.jtusci.2014.11.008

  • Radaideh OMA, Grasemann B, Melichar R, Mosar J (2016) Detection and analysis of morphotectonic features utilizing satellite remote sensing and Gis: an example in SW Jordan. Geomorphology. 275:58–79

    Article  Google Scholar 

  • Ranjbar H, Honarmand M, Moezifar Z (2004) Analysis of ETM+ and airborne geophysical data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt, using fuzzy classification. Remote sensing for Environmental Monitoring, GIS applications, and Geology III, SPIE: 165–173

  • Rezaei A, Hassani H, Moarefvand P, Golmohammadi A (2019) Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods. https://doi.org/10.1080/24749508.2019.1585657

  • Richards JA, Xia JA (1999) Remote sensing digital image analysis; an introduction, 3nd edn. Springer-Verlag p 494

  • Rocci G, Bronner G, Deschamps M (1991) Crystalline basement of the West African Craton. In: Dallmeyer RD, Lécorché JP (eds) The West African Orogens and Circum-Atlantic correlatives. Springer Verlag, Berlin, pp 31–61

    Chapter  Google Scholar 

  • Rockwell BW, Knepper DH, Jr, Horton JD (2015) Landsat maps (phase V, deliverable 60) ASTER maps (phase V, deliverable 62), ASTER-DEM maps (phase V, deliverable 63), and spectral remote sensing in support of PRISM-II mineral resource assessment project, Islamic Republic od Mauritania. U.S. Geological. phase V deliverables 61 and 64. https://doi.org/10.3133/ofr20131280

  • Schofield DI, Gillespie MR (2007) A tectonic interpretation of “eburnean terrane” outliers in the Reguibat shield, Mauritania. J Afr Earth Sci 49:179–186

    Article  Google Scholar 

  • Schofield DI, Horstwood MSA, Pitfield PEJ, Gillespie M, Darbyshire F, O'Connor EA, Abdouloye TB (2012) U–Pb dating and Sm–Nd isotopic analysis of granitic rocks from the Tiris Complex: new constraints on key events in the evolution of the Reguibat Shield, Mauritania. Precambrian Research 204–205, 1–11

  • Singh A, Harrison A (1985) Standardized principal components. Int J Remote Sens 6(6):883–896. https://doi.org/10.1080/01431168508948511

    Article  Google Scholar 

  • Tait J, Straathof G, Söderlund U, Ernst RE, Key RM, Jowitt SM, Lo K, Dahmada MEM, N’Diaye O (2012) The Ahmeyim Great Dyke of Mauritania: a newly dated Archaean intrusion. Lithos 174:323–332. https://doi.org/10.1016/j.lithos.2012.09.014

    Article  Google Scholar 

Download references

Acknowledgments

This work has been made in preparation of a PhD thesis. It is a collaboration between the University of Nouakchott Al Aasriya, Mauritania, and the Cadi Ayyad University of Marrakesh, Morocco. The authors thank also the five anonymous reviewers who by their remarks have improved the final version of the manuscript.

Funding

The study was financially supported by the Cooperation Service of Cultural Action of the French Embassy in Nouakchott (SCAC) which helped to make displacement between the two universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Hamath Ba.

Additional information

Responsible Editor: Ciro Cucciniello

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, M.H., Ibouh, H., Lo, K. et al. Spatial and temporal distribution patterns of Precambrian mafic dyke swarms in northern Mauritania (West African craton): analysis and results from remote-sensing interpretation, geographical information systems (GIS), Google Earth ™ images, and regional geology. Arab J Geosci 13, 209 (2020). https://doi.org/10.1007/s12517-020-5194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-5194-2

Keywords

Navigation