Skip to main content

Advertisement

Log in

Predicting land use changes in northern China using logistic regression, cellular automata, and a Markov model

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Land use changes are complex processes affected by both natural and human-induced driving factors. This research is focused on simulating land use changes in southern Shenyang in northern China using an integration of logistic regression, cellular automata, and a Markov model and the use of fine resolution land use data to assess potential environmental impacts and provide a scientific basis for environmental management. A set of environmental and socio-economic driving factors was used to generate transition potential maps for land use change simulations in 2010 and 2020 using logistic regression. An average relative operating characteristic value of 0.824 was obtained, indicating the validity of the logistic regression model. The logistic–cellular automata (CA)–Markov model was calibrated by comparing the actual and simulated land use maps of 2010. A match of 83.7% was achieved between the predicted and actual maps of 2010, which represented a satisfactory calibration. This indicated that the integration of the logistic regression, CA, and Markov model has a high potential for simulating land use change in northern China. The calibrated hybrid model was implemented to obtain a land use map for 2020. The results showed a new wave of suburban development in the southwestern, west, and northwestern parts of the study area during 2010–2020. In addition, urban expansion has been accelerating, which is very likely to exacerbate the extensive environmental pollution currently existing in this area. Moreover, rapid urban expansion has resulted in significant decreases in forest areas and agricultural lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-sharif AAA, Pradhan B (2014) Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS Arabian. J Geosci 7:4291–4301. https://doi.org/10.1007/s12517-013-1119-7

    Article  Google Scholar 

  • Alsharif AA, Pradhan B (2013) Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model Journal of the Indian Society of Remote Sensing:1–15

  • Arnold CL Jr, Gibbons CJ (1996) Impervious surface coverage: the emergence of a key environmental indicator. J Am Plan Assoc 62:243–258

    Google Scholar 

  • Arsanjani JJ, Helbich M, Kainz W, Darvishi Boloorani A (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275

    Google Scholar 

  • Arsanjani JJ, Kainz W, Mousivand AJ (2011) Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. Int J Image Data Fusion 2:329–345. https://doi.org/10.1080/19479832.2011.605397

    Article  Google Scholar 

  • Behera MD, Borate SN, Panda SN, Behera PR, Roy PS (2012) Modelling and analyzing the watershed dynamics using cellular automata (CA)–Markov model–a geo-information based approach Journal of earth system science 121:1011–1024

    Google Scholar 

  • Buhre B, Elliott L, Sheng C, Gupta R, Wall T (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307

    Google Scholar 

  • Carey RO, Hochmuth GJ, Martinez CJ, Boyer TH, Dukes MD, Toor GS, Cisar JL (2013) Evaluating nutrient impacts in urban watersheds: challenges and research opportunities. Environ Pollut 173:138–149

    Google Scholar 

  • Chen X, Yu S-X, Zhang Y-P (2013) Evaluation of spatiotemporal dynamics of simulated land use/cover in china using a probabilistic cellular automata-Markov model. Pedosphere 23:243–255. https://doi.org/10.1016/S1002-0160(13)60013-2

    Article  Google Scholar 

  • Choe J, Bang K, Lee J (2002) Characterization of surface runoff in urban areas. Water Sci Technol 45:249–254

    Google Scholar 

  • Coker ME, Bond NR, Chee YE, Walsh CJ (2018) Alternatives to biodiversity offsets for mitigating the effects of urbanization on stream ecosystems. Conserv Biol 32:789–797. https://doi.org/10.1111/cobi.13057

    Article  Google Scholar 

  • Desta Y, Goitom H, Aregay G (2019) Investigation of runoff response to land use/land cover change on the case of Aynalem catchment. Journal of African Earth Sciences 153:130–143. https://doi.org/10.1016/j.jafrearsci.2019.02.025

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modelling tropical deforestation: A study of GCM land-surface parametrizations Quarterly. J R Meteorol Soc 114:439–462

    Google Scholar 

  • Dietzel C, Clarke K (2006) The effect of disaggregating land use categories in cellular automata during model calibration and forecasting computers. Environ Urban Syst 30:78–101

    Google Scholar 

  • Dietzel C, Clarke KC (2004) Replication of spatio-temporal land use patterns at three levels of aggregation by an urban cellular automata. Cellular Automata. Springer, In, pp 523–532

    Google Scholar 

  • Eastman J (2009) Idrisi taiga Worcester. Clark University, MA

    Google Scholar 

  • Etemadi H, Smoak JM, Karami J (2018) Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA–Markov algorithms to monitor and predict future change. Environ Earth Sci 77:208–213. https://doi.org/10.1007/s12665-018-7392-8

    Article  Google Scholar 

  • Ferreira M, Lau S-L, Stenstrom M (2013) Size fractionation of metals present in highway runoff: beyond the six commonly reported species. Water Environ Res 85:793–805

    Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. Sage

  • Fu B, Su J, Wu D, Li F, Xu C, Xie Y, Zhang Z (2011) Evaluation of temporal and spatial differences of water environment in Liaohe Basin. Water Resour Prot 27:5–8

    Google Scholar 

  • Fu X, Wang X, Yang YJ (2018) Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J Environ Manag 206:10–19. https://doi.org/10.1016/j.jenvman.2017.10.012

    Article  Google Scholar 

  • Geng Y, Sarkis J, Wang X, Zhao H, Zhong Y (2013) Regional application of ground source heat pump in China: a case of Shenyang. Renew Sust Energ Rev 18:95–102

    Google Scholar 

  • Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761–3772

    Google Scholar 

  • Hagenauer J, Helbich M (2018) Local modelling of land consumption in Germany with RegioClust. Int J Appl Earth Obs Geoinf 65:46–56. https://doi.org/10.1016/j.jag.2017.10.003

    Article  Google Scholar 

  • Hamdy O, Zhao S, Osman T, Salheen AM, Eid YY (2016) Applying a hybrid model of Markov chain and logistic regression to identify future urban sprawl in Abouelreesh. Aswan: A Case Study Geosciences 6. https://doi.org/10.3390/geosciences6040043

    Google Scholar 

  • Houet T, Hubert-Moy LL (2006) Modeling and projecting land-use and land-cover changes with Cellular Automaton in considering landscape trajectories. EARSeL eProceedings 5:63–76

    Google Scholar 

  • Hu Z, Lo CP (2007) Modeling urban growth in Atlanta using logistic regression computers. Environ Urban Syst 31:667–688. https://doi.org/10.1016/j.compenvurbsys.2006.11.001

    Article  Google Scholar 

  • Islam K, Rahman MF, Jashimuddin M (2018) Modeling land use change using cellular automata and artificial neural network: the case of Chunati wildlife sanctuary. Bangladesh Ecological Indicators 88:439–453. https://doi.org/10.1016/j.ecolind.2018.01.047

    Article  Google Scholar 

  • Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M Islam MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country Ecol Indic 48:282–291 doi:https://doi.org/10.1016/j.ecolind.2014.08.016

    Google Scholar 

  • Kamusoko C, Aniya M, Adi B, Manjoro M (2009) Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29:435–447

    Google Scholar 

  • Ku C-A (2016) Incorporating spatial regression model into cellular automata for simulating land use change Applied Geography 69:1–9 https://doi.org/10.1016/j.apgeog.2016.02.005

    Google Scholar 

  • Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. Prog Phys Geogr 21:375–393

    Google Scholar 

  • Lewicki P, Hill T (2006) Statistics: methods and applications Tulsa. Statsoft, OK

    Google Scholar 

  • Lin B, Zhu J (2018) Changes in urban air quality during urbanization in China. J Clean Prod 188:312–321. https://doi.org/10.1016/j.jclepro.2018.03.293

    Article  Google Scholar 

  • Liu C, Yuan Z, Du Y, Qi X, Shi C, Wang N, Han X (2017a) Spatial distribution characteristics of air pollutants during heating season in Shenyang city. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), 8–11 Sept. 2017. pp 16–19. https://doi.org/10.1109/CIAPP.2017.8167052

  • Liu X et al (2017b) A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc Urban Plan 168:94–116. https://doi.org/10.1016/j.landurbplan.2017.09.019

    Article  Google Scholar 

  • Liu Y, Dai L, Xiong H (2015) Simulation of urban expansion patterns by integrating auto-logistic regression. Markov chain and cellular automata models Journal of Environmental Planning and Management 58:1113–1136. https://doi.org/10.1080/09640568.2014.916612

    Article  Google Scholar 

  • Long JS (1997) Regression models for categorical and limited dependent variables vol 7. Sage

  • Luo G, Amuti T, Zhu L, Mambetov BT, Maisupova B, Zhang C (2015) Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata-Markov model. Reg Environ Chang 15:277–289. https://doi.org/10.1007/s10113-014-0638-4

    Article  Google Scholar 

  • MacCullagh P, Nelder JA (1989) Generalized linear models vol 37. CRC press,

  • Memarian H, Balasundram SK, Talib JB, Sung CTB, Sood AM, Abbaspour K (2012) Validation of CA-Markov for simulation of land use and cover change in the Langat Basin. Malaysia J Geogr Inf Syst 4:542–554

    Google Scholar 

  • Meyer WB, Turner I (1994) Changes in land use and land cover: a global perspective vol 4. Cambridge University Press,

  • Mishra VN, Rai PK (2016) A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar). India Arab J Geosci 9:249. https://doi.org/10.1007/s12517-015-2138-3

    Article  Google Scholar 

  • Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99:141–153

    Google Scholar 

  • Moldovan M, Gomez MM, Palacios MA (1999) Determination of platinum, rhodium and palladium in car exhaust fumes. J Anal At Spectrom 14:1163–1169

    Google Scholar 

  • Mustafa A, Heppenstall A, Omrani H, Saadi I, Cools M, Teller J (2018) Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm computers. Environ Urban Syst 67:147–156. https://doi.org/10.1016/j.compenvurbsys.2017.09.009

    Article  Google Scholar 

  • Naboureh A, Rezaei Moghaddam MH, Feizizadeh B, Blaschke T (2017) An integrated object-based image analysis and CA-Markov model approach for modeling land use/land cover trends in the Sarab plain. Arab J Geosci 10:259–216. https://doi.org/10.1007/s12517-017-3012-2

    Article  Google Scholar 

  • Omrani H, Tayyebi A, Pijanowski B (2017) Integrating the multi-label land-use concept and cellular automata with the artificial neural network-based Land Transformation Model: an integrated ML-CA-LTM modeling framework. GIScience & Remote Sensing 54:283–304. https://doi.org/10.1080/15481603.2016.1265706

    Article  Google Scholar 

  • Park S, Jeon S, Kim S, Choi C (2011) Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landsc Urban Plan 99:104–114

    Google Scholar 

  • Peng C, Cai Y, Wang T, Xiao R, Chen W (2016) Regional probabilistic risk assessment of heavy metals in different environmental media and land uses: An urbanization-affected drinking water supply area. Sci Rep 6:37084. https://doi.org/10.1038/srep37084 https://www.nature.com/articles/srep37084#supplementary-information

    Article  Google Scholar 

  • Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248

    Google Scholar 

  • Rosenfield GH, Fitzpatricklins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52:223–227

    Google Scholar 

  • Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math Comput Model 54:938–943

    Google Scholar 

  • Shao M, Tang X, Zhang Y, Li W (2006) City clusters in China: air and surface water pollution. Front Ecol Environ 4:353–361

    Google Scholar 

  • Shuster W, Bonta J, Thurston H, Warnemuende E, Smith D (2005) Impacts of impervious surface on watershed hydrology: a review. Urban Water J 2:263–275

    Google Scholar 

  • Siddiqui A, Siddiqui A, Maithani S, Jha AK, Kumar P, Srivastav SK (2017) Urban growth dynamics of an Indian metropolitan using CA Markov and logistic regression. Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2017.11.006

    Google Scholar 

  • Smith PA (1994) Autocorrelation in logistic regression modelling of species’ distributions. Glob Ecol Biogeogr Lett 4:47–61. https://doi.org/10.2307/2997753

    Article  Google Scholar 

  • Sun X, Crittenden JC, Li F, Lu Z, Dou X (2018) Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci Total Environ 622-623:974–987. https://doi.org/10.1016/j.scitotenv.2017.12.062

    Google Scholar 

  • Surabuddin Mondal M, Sharma N, Kappas M, Garg PK (2013) Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques Geocarto Int 28:632–656 doi:https://doi.org/10.1080/10106049.2013.776641

    Google Scholar 

  • Torrens PM (2006) Geosimulation and its application to urban growth modeling. Complex artificial environments. Springer, In, pp 119–136

    Google Scholar 

  • Vaz EdN, Nijkamp P, Painho M, Caetano M (2012) A multi-scenario forecast of urban change: a study on urban growth in the Algarve Landscape and Urban Planning 104:201–211

    Google Scholar 

  • Veldkamp A, Fresco L (1996) CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol Model 91:231–248

    Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manag 30:391–405. https://doi.org/10.1007/s00267-002-2630-x

    Article  Google Scholar 

  • Verhagen P (2007) Case studies in archaeological predictive modelling: Proefschrift vol 14. Amsterdam University Press

  • Wang C, Lei S, Elmore JA, Jia D, Mu S (2019a) Integrating temporal evolution with cellular automata for simulating land cover change. Remote Sens:11. https://doi.org/10.3390/rs11030301

    Google Scholar 

  • Wang E, Li Q, Hu H, Peng F, Zhang P, Li J (2019b) Spatial characteristics and influencing factors of river pollution in China. Water Environ Res 91:351–363. https://doi.org/10.1002/wer.1044

    Article  Google Scholar 

  • Wang H, Stephenson SR, Qu S (2019c) Modeling spatially non-stationary land use/cover change in the lower Connecticut River Basin by combining geographically weighted logistic regression and the CA-Markov model. Int J Geogr Inf Sci 33:1313–1334. https://doi.org/10.1080/13658816.2019.1591416

    Article  Google Scholar 

  • Wang Q, Li SP, Cui MX (2013a) Study on the status and development strategy of low-carbon economy in the northeast old industrial base. Appl Mech Mater 291:1455–1460

    Google Scholar 

  • Wang X, Cai M, Zhong B, Yao Y, Yin S, Wu D (2013b) Research on spatial characteristic of non-point source pollution in Liaohe River basin. Huan jing ke xue 34:3788–3796

    Google Scholar 

  • Watson RT (2000) Land use, land-use change, and forestry: a special report of the intergovernmental panel on climate change. Cambridge University Press

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A: Economy and Space 25:1175–1199 doi:https://doi.org/10.1068/a251175

    Google Scholar 

  • Wu Q et al (2016) Contamination, toxicity and speciation of heavy metals in an industrialized urban river: implications for the dispersal of heavy metals. Mar Pollut Bull 104:153–161. https://doi.org/10.1016/j.marpolbul.2016.01.043

    Article  Google Scholar 

  • Xiao Q, Ma Z, Li S, Liu Y (2015) The impact of winter heating on air pollution in China. PLoS One 10:e0117311. https://doi.org/10.1371/journal.pone.0117311

    Article  Google Scholar 

  • Xue Y et al (2016) Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures. Atmos Environ 142:303–312. https://doi.org/10.1016/j.atmosenv.2016.08.004

    Article  Google Scholar 

  • Yang X, Zheng X-Q, Chen R (2014) A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol Model 283:1–7. https://doi.org/10.1016/j.ecolmodel.2014.03.011

    Article  Google Scholar 

  • Ye B, Bai Z (2008) Simulating land use/cover changes of Nenjiang County based on CA-Markov model. Computer And Computing Technologies In Agriculture, Volume I. Springer, In, pp 321–329

    Google Scholar 

  • Yue Q, Du T (2010) Impact analysis of the industrial structure and distribution of Liaohe River Basin on the water quality. In: Environmental Science and Information Application Technology (ESIAT), 2010 International Conference on. IEEE, pp 263–266

  • Zheng HW, Shen GQ, Wang H, Hong J (2015) Simulating land use change in urban renewal areas: a case study in Hong Kong. Habitat Int 46:23–34. https://doi.org/10.1016/j.habitatint.2014.10.008

    Article  Google Scholar 

  • Zhou D, Lin Z, Liu L (2012) Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis. Sci Total Environ 439:260–274. https://doi.org/10.1016/j.scitotenv.2012.09.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longyan Cai.

Additional information

Responsible Editor: Nilanchal Patel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Cai, L., Xu, H. et al. Predicting land use changes in northern China using logistic regression, cellular automata, and a Markov model. Arab J Geosci 12, 790 (2019). https://doi.org/10.1007/s12517-019-4985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4985-9

Keywords

Navigation