Skip to main content

Advertisement

Log in

Assessment of tailings stability and soil contamination of Kef Ettout (NW Tunisia) abandoned mine

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2019

This article has been updated

Abstract

The abandoned mining wastes still represent one of the significant environmental hazards. Kef Ettout tailings is one example that was exposed to severe ambient conditions and must be assessed to determine its potential risks. The initial mine wastes, the tailings, and agricultural soils were investigated. The results showed that the winds and runoff water distributed the potentially toxic metals and the alkaline pH of tailings and soils, the carbonate, and TOC content controlled the metal bioavailability. About 22% of Pb and 70 and 98% of Zn and Cd, respectively, were leached from tailings. Despite the initial wastes were richer in Zn (1.5 times) than in Pb, the tailings kept much more Pb (1.6 times) than Zn. In agricultural soils, the mean concentrations of Pb, Zn, and Cd were 69, 141, and 1.8 mg kg−1, respectively. The enrichment factor and geoaccumulation index showed that more than 75% of soils were considered strongly contaminated. Speciation results indicated that about 97% of initial wastes metals were bounded to residual fractions. However, in tailings, 9–30, 4–10, and < 6% of Pb, Zn, and Cd, respectively, were in stable forms. Redistribution index (Utf) and relative binding intensity (IR) of metal tailing had confirmed that the tailings continued to provide more Zn quantity than Pb and Cd. In soils, the highest percentages of Pb and Zn were closely associated with organic matter, the Cd was significantly bounded to the exchangeable fraction, and the mean decreasing factor mobility order was Cd (66) < Pb (73) < Zn (78). Therefore, this tailings type must be rehabilitated to limit its risks, particularly of Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Photo 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 06 May 2019

    The original version of this paper was published with error.

References

  • Abdallah S, Al-Hobaib KQ, Al-Jaseem HMBA, Ahmed HA (2012) Environmental impact assessment inside and around Mahd Adh Dhahab gold mine, Saudi Arabia. Arab J Geosci 5:985–997

    Article  Google Scholar 

  • AFNOR, (1979) France (norms AFNOR, www.afnor.fr)

  • Agnieszka S, Wieslaw Z (2002) Application of sequential extraction and the ICPAES method for study of the partitioning of metals in fly ashes. Microchem J 72:9–16

    Article  Google Scholar 

  • Alekseenko VA, Pashkevich MA, Alekseenko AV (2017) Metallisation and environmental management of mining site soils. J Geochem Explor 174:121–127

    Article  Google Scholar 

  • Alexander CR, Smith RG, Calder FD, Schropp SJ, Windom HL (1993) The historical record of metal enrichments in two Florida estuaries. Estuaries 16:627–637

    Article  Google Scholar 

  • Baize D (1997) Teneurs totales en éléments traces métalliques dans les sols (France). Références et stratégies d’interprétation. INRA Éditions, Paris, p 410

    Google Scholar 

  • Banin A, Gerstl Z, Fine PN, Metsger Z, Newzella D (1990) Minimizing soil contamination through control of sludge transformations in soil, Joint German-Israel Research. Projects Report No Wt 8678/458

  • Batik P (1980) Carte géologique de la Tunisie; feuille n°11: Hédil. Service Géologique, Office National des Mines

  • Bergaya E, Vayer M (1997) CEC of clays: measurement by adsorption of a copper ethylenediamine complex. Appl Clay Sci 12:275–280

    Article  Google Scholar 

  • Bian Z, Miao X, Lei S, Chen S, Wang W, Struthers S (2012) The challenges of reusing mining and mineral-processing wastes. Science 337:702–703

    Article  Google Scholar 

  • Blanchard C (2000) Caractérisation de la mobilisation potentielle des polluants inorganiques dans les sols pollués. Thèse spécialité: Science et technique du déchet Ecole doctorale de chimie de Lyon France, 241p

  • Bodar CW, Pronk ME, Sijm DT (2006) The European Union risk assessment on zinc and zinc compounds: the process and the facts. Integr Environ Asses 1(4):301–319

    Article  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Review remediation of heavy metal(loid)s contaminated soils: to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  Google Scholar 

  • Bosmans H, Paenhuys J (1980) The distribution of heavy metals in the soils of the Kempen. Pédologie 15:191–223

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London

    Google Scholar 

  • Buccolieri A, Buccolieri G, Dell’Atti A, Strisciullo G, Gagliano-Candela R (2010) Monitoring of total and bioavailable heavy metals concentration in agricultural soils. Environ Monit Assess 168:547–560

    Article  Google Scholar 

  • Camden-Smith BPC, Tutu H (2014) Geochemical modelling of the evolution and fate of metal pollutants arising from an abandoned gold mine tailings facility in Johannesburg. Water Sci Technol 69(5):1108–1114

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (1991) Canadian water quality guidelines for the protection of aquatic life: guidance on the site-specific application of water quality guidelines in Canada: procedures for deriving numerical water quality objectives. In: Canadian environmental quality guidelines, Canadian Council of Ministers of the Environment, Winnipeg

  • Chai Y, Guo J, Chai S, Cai J, Xue L, Zhang Q (2015) Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng–Songyuan area, Jilin Province, Northeast China. Chemosphere 134:67–75

    Article  Google Scholar 

  • Charef A, Sheppard SMF (1991) The diapir related Bou Grine Pb–Zn deposit (Tunisia): evidence for role of hot sedimentary basin brines. In: Pagel M, Leroy J (eds) Source, transport and deposition of metals. Balkema, Rotterdam, pp 269–272

    Google Scholar 

  • Chotpantarat S, Chunhacherdchai L, Wikiniyadhanee R, Tongcumpou C (2015) Effects of humic acid amendment on the mobility of heavy metals (Co, Cu, Cr, Mn, Ni, Pb, and Zn) in gold mine tailings in Thailand. Arab J Geosci 8:7589–7600

    Article  Google Scholar 

  • D.G.R.E (2000) Annuaire de l’exploitation des nappes. Rapport D.G.R.E, Tunis 282p

    Google Scholar 

  • Daldoul G, Souissi R, Souissi F, Jemmali N, Chakroun HK (2015) Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia. J Afr Earth Sci 110:150–159

    Article  Google Scholar 

  • Dang Z, Liu C, Haigh MJ (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut 118:419–426

    Article  Google Scholar 

  • Davidson CM, Duncan AL, Littlejohn D, Ure AM, Garden LM (1998) A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal Chim Acta 363:45–55

    Article  Google Scholar 

  • Deneux-Mustin S, Roussel-Debet S, Mustin C, Henner P, Munier-Lamy C, Colle C, Berthelin J, Garnier-Laplace J, Leyval C (2003) Mobilité et transfert racinaire des éléments traces : influence des micro-organismes du sol. Pref Elisabeth Leclerc-Cessac Paris, Tec et Doc

    Google Scholar 

  • Escarre J, Lefebvre C, Raboyeau S, Dossantos A, Gruber W, Cleyet Marel JC, Frerot H, Noret N, Mahieu S, Collin C, Van Oort F (2011) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water Air Soil Poll 216:485–504

    Article  Google Scholar 

  • Esshaimi M, Ouazzani N, El Gharmali A, Berrkhis F, Valiente M, Mandi L (2013) Speciation of heavy metals in the soil and the tailings, in the zinc-lead Sidi Bou Othmane abandoned mine. Environ Earth Sci 3(8):138–147

    Google Scholar 

  • Ettler V, Mihaljevic M, Kribek B, Majer V, Sebek O (2011) Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164:73–84

    Article  Google Scholar 

  • Fang ZQ (2016) Pollution Characteristics of Heavy Metal in Soil from Lead and Zinc mine and its Stabilization Study. China University of Mining & Technology, Beijing

    Google Scholar 

  • Fiedler HD, Lopez-Sanchez JF, Rubio R, Rauret G, Quevauviller PH, Ure AM, Muntau H (1994) Study of the stability of extractable trace metal contents in a river sediment using sequential extraction. Analyst 119:1109–1114

    Article  Google Scholar 

  • Fijałkowski K, Kacprzak M, Grobelak A, Placek A (2012) The influence of selected soil parameters on the mobility of heavy metals in soils. Inż Och Środ 15:81–92

    Google Scholar 

  • Gworek B, Barański A, Czarnowski K, Sienkiewicz J, Porębska G (2000) Risk assessment in contaminated land management. Rocz Gleboznawcze 3:101–110

    Google Scholar 

  • Haghiri F (1974) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc and soil temperatures. J Environ Qual 3:180–183

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Halim MA, Majumder RK, Zaman MN, Hossain S, Rasul MG, Sasak K (2013) Mobility and impact of trace metals in Barapukuria coal mining area, Northwest Bangladesh. Arab J Geosci 6(12):4593–4605

    Article  Google Scholar 

  • He ZL, Yanga XE, Stoffellab PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  Google Scholar 

  • Ho D, Evans GJ (1997) Operational speciation of cadmium, copper, lead and zinc in the NIST standard reference materials 2710 and 2711 (Monatna soil) by the BCR sequential extraction procedure and flame atomic absorption spectrometry. Anal Commun 34:363–364

    Article  Google Scholar 

  • Huang SW, Jin JY (2008) Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ Monit Assess 139(1–3):317–327

    Article  Google Scholar 

  • Huang H, Li T, Gupta D, He Z, Yang XE, Ni B, Li M (2012) Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. J Environ Sci 24:376–386

    Article  Google Scholar 

  • Huynh TH (2009) Impacts des métaux lourds sur l’interaction plante/verre de terre/microflore tellurique. Université Paris-Est, Océan 170p

    Google Scholar 

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press Inc. 3ème Ed Kalbitz K, Wennrich R. Sci Total Environ, Boca Raton, pp 209–227

    Google Scholar 

  • Kalbitz K, Rupp H, Meißner R, Braumann F (1998) Veränderungen in der Stoffdynamik eines Niedermoorgebietes durch Renaturierungsmaßnahmen. In: Geller W et al (ed) Gewässerschutz im Einzugsgebiet der Elbe. UFZ, Umweltforschungszentrum Leipzig-Halle GmbH. Vieweg+Teubner Verlag

  • Karczewska A (1996) Metal species distribution in top- and sub-soil soil in an area affected by copper smelter emissions. Appl Geochem 11:35–42

    Article  Google Scholar 

  • Khamseh A, Shahbazi F, Oustan S, Najafi N, Davatgar N (2017) Impact of tailings dam failure on spatial features of copper contamination (Mazraeh mine area, Iran). Arab J Geosci 10:244

    Article  Google Scholar 

  • Kossoff D (2014) Mine tailings dams: characteristics, failure, environmental impacts, and remediation. Appl Geochem 51:229–245

    Article  Google Scholar 

  • Kucharski R, Sas-Nowosielska A, Małkowski E, Japenga J, Kuperberg JM (2008) Phytoremediation technologies used to reduce environmental threat posed by metal-contaminated soils: theory and reality. In: Barnes I, Kharytonov MM (eds) Simulation and assessment of chemical processes in a multiphase environment. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht

    Google Scholar 

  • Lama EJ, Cánovasb EJM, Gálveza ME, Montofréb ÍL, Keithc BF, Fazd Á (2017) Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in northern Chile. J Geochem Explor 182:210–217

    Article  Google Scholar 

  • Lamy I (2002) Réactivité des matières organiques des sols vis-à-vis des métaux. J Natl l’étude Sols 22

  • Lei M, Zhang Y, Khan S, Qin PF, Liao BH, Liao BH (2010) Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn Mining area. Environ Monit Assess 168:215–222

    Article  Google Scholar 

  • Li LY, Li RS (2000) The role of clay minerals and effect of H+ ions on removal of heavy metal (Pb2+) from contaminated soil. Can Geotech J 37:296–307

    Article  Google Scholar 

  • Liakopoulos A, Lemiere B, Michael K, Crouzet C, Laperche V, Romaidis I, Drougas I, Lassin A (2010) Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece). Waste Manag Res 28:996–1009

    Article  Google Scholar 

  • Lopez-Sanchez JF, Sahuquillo A, Fiedler HD, Rubio R, Rauret G, Muntau H, Quevauviller P (1998) CRM 601, a stable material for its extractable content of heavy metals. Analyst 123:1675–1677

    Article  Google Scholar 

  • Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J Environ Qual 13:372–376

    Google Scholar 

  • Martin R, Sanchez DM, Gutierrez AM (1998) Sequential extraction of U, Th, Ce, La and some heavy metals in sediments from Ortigas River, Spain. Talanta 46:1115–1121

    Article  Google Scholar 

  • McLean JE, Bledsoe BE (1992) Behaviour of metals in soils. U.S. Environmental Protection Agency /540/S92/018

  • Mil-Homens M, Stevens RL, Abrantes FF, Cato I (2006) Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Cont Shelf Res 26(10):1184–1205

    Article  Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    Article  Google Scholar 

  • Montoroi JP (1997) Electric conductivity of soil solution and aqueous. Etude Gest Sols 4:279–298

    Google Scholar 

  • Mouni L, Belkhiri L, Bouzaza A, Bollinger JC (2017) Interactions between Cd, Cu, Pb, and Zn and four different mine soils. Arab J Geosci 10:77

    Article  Google Scholar 

  • Mseddi H (2013) Caractérisation des rejets miniers des sédiments et des sols d’El Akhouat (bassin versant aval de l’oued Siliana) phytoremediation des sols pollués -Tunisie-. Thèse de Doctorat de l’Université de Tunis El Manar, Tunisie. 221p

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. J Geol 2:109–118

    Google Scholar 

  • Narwal RP, Singh BR, Salbu B (1999) Association of cadmium, zinc, copper and nickel with components in naturally heavy metal rich soils studied by parallel and sequential extractions. Commun Soil Sci Plant 30:1209–1230

    Article  Google Scholar 

  • Neal NH, Sposito G (1986) Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. Soil Sci 44:641–650

    Google Scholar 

  • Nganje TN, Adamu CI, Ugbaja AN, Ebieme E, Sikakwe GU (2011) Environmental contamination of trace elements in the vicinity of Okpara coal mine, Enugu, Southeastern Nigeria. Arab J Geosci 4(1–2):199–205

    Article  Google Scholar 

  • Obiora SC, Chukwu A, Davies TC (2016) Heavy metals and health risk assessment of arable soils and food crops around Pb–Zn mining localities in Enyigba, southeastern Nigeria. J Afr Earth Sci 116:182–189

    Article  Google Scholar 

  • Ociepa E, Kisiel A, Lach J (2010) Effect of fertilization with sewage sludge and composts on the change of cadmium and zinc solubility in soils. J Environ Stud 2:171–175

    Google Scholar 

  • Othmani MA (2013) Caractérisation des rejets miniers de Touiref (Nord-Ouest de la Tunisie) et dynamique des métaux lourds dans les conditions superficielles et impact sur l’environnement. Thèse de Doctorat de l’Université de Tunis El Manar, Tunisie, 243p

  • Ouchir N, Ben Aissa L, Boughdiri M, Aydi A (2016) Assessment of heavy metal contamination status in sediments and identification of pollution source in Ichkeul Lake and rivers ecosystem, northern Tunisia. Arab J Geosci 9:539

    Article  Google Scholar 

  • Papadopoulou-Vrynioti K, Alexakis D, Bathrellos GD, Skilodimou HD, Vryniotis D, Vasiliades E (2014) Environmental research and evaluation of agricultural soil of the Arta plain, western Hellas. J Geochem Explor 136:84–92

    Article  Google Scholar 

  • Parizanganeh A, Hajisoltani P, Zamani A (2010) Assessment of heavy metal pollution in surficial soils surrounding Zinc Industrial Complex in Zanjan-Iran. Procedia Environ Sci 2:162–166

    Article  Google Scholar 

  • Perel’man AI (1986) Geochemical barriers: theory and practical applications. Appl Geochem 1(6):669–680

    Article  Google Scholar 

  • Plassard F, Winiarski T, Petit-Ramel M (2000) Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. J Contam Hydrol 42:99–111

    Article  Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321

    Article  Google Scholar 

  • Rao SC, Northup BK (2008) Forage and grain soybean effects on soil water content and use efficiency. Crop Sci 48(2):789–793

    Article  Google Scholar 

  • Rauret G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Luck D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233

    Article  Google Scholar 

  • Rayment GE, Lyons DJ (2011) Soil chemical methods—Australasia. CSIRO Publishing, Melbourne 495+20 pp

    Google Scholar 

  • Rodriguez L, Ruiz E, Alonso-Azcarate J, Rincon J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J Environ Manag 90:1106–1116

    Article  Google Scholar 

  • Rouvier H (1977) Géologie de l'extrême Nord tunisien: Tectonique et paléogéographies superposées à l'extrémité orientale de la chaîne nord-maghrébine. Doctorat d'Etat. 2 Volumes, Univer Paris-Orsy 703 p

  • Sainfeld P (1952) Les gites plombo-zincifères de la Tunisie. Ann Mines Géol 9 Tunis:285

    Google Scholar 

  • Salbu B, Krekling T, Oughton DH (1998) Characterization of radioactive particles in the environment. Analyst 123:843–849

    Article  Google Scholar 

  • Salomons W (1993) Adoption of common schemes for single and sequential extractions of trace metals in soil and sediments. Int J Environ Anal Chem 51:3–4

    Article  Google Scholar 

  • Salomons W, Stigliani W (1995) Biogeodynamics of pollutants in soils and sediments. Springer-Verlag, Berlin, 352p

    Book  Google Scholar 

  • Schultz LG (1964) Quantitative interpretation of mineral composition from X-ray and chemical data for the Pierre Shale U. S. Geol. Survey Prof. Paper 391C, United States Government Printing Office, Washington, D.C., C1-C31

  • Sebei A (2007) Impact des rejets miniers sur l’environnement. Cas de bassins versants des Oueds Mellègue et Tessa (Tunisie septentrionale). Thèse de Doctorat de l’Université deTunis El Manar, Tunisie, 256p

  • Sherlock EJ, Lawrence RW, Poulin R (1995) On the neutralization of acid rock drainage by carbonate and silicate minerals. Environ Geol 25:43–54

    Article  Google Scholar 

  • Sliti N (2013) Minéralogie et composition chimiques des rejets miniers et des sols dans l’ancien district de Khanguet Kef Ettout. Mastère de Recherche de l’Université de Tunis El Manar, Tunisie, 131p

  • Staunton S (2002) Direct and indirect effects of organic matter on metal immobilisation in soil. Dev Soil Sci 28(Part A):79–97

    Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    Article  Google Scholar 

  • Trefrey JH, Presley BJ (1976) Heavy metals in sediments from San Antonio Bay and the Northwest Gulf of Mexico. Environ Geol 1(5):283–294

    Article  Google Scholar 

  • Trifi M, Dermech M, Charef A, Azouzi R, Hjiri B (2018) Extraction procedures of toxic and mobile heavy metal fraction from complex mineralogical tailings affected by acid mine drainage. Arab J Geosci 11:328

    Article  Google Scholar 

  • Ure AM, Quevauviller P, Muntau P, Greipink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ Anal Chem 51(1–4):135–151

    Article  Google Scholar 

  • Usero J, Gamero M, Morillo J, Gracia I (1998) Comparative study of three sequential extraction procedures for metals in marine sediments. Environ Int 24:478–496

    Article  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal – contaminated land. A review. Environ Chem Lett 8:1–17

    Article  Google Scholar 

  • Van der Marel HW (1966) Quantitative analysis of clay minerals and their admixtures. Contrib Mineral Petrol 12(1):96–138

    Article  Google Scholar 

  • Van Loon GW, Duffy SJ (2007) Chemia środowiskowa, Wyd. Naukowe PWN, Warszawa

    Google Scholar 

  • Wang L, Li Y, Haoran Wang H, Cui X, Wang Xing LA, Wang X, Wang C, Gan D (2017) Weathering behavior and metal mobility of tailings under an extremely arid climate at Jinchuan Cu-Ni sulfide deposit Western China. J Geochem Explor 173:1–12

    Article  Google Scholar 

  • Yadav HL, Jamal A (2015) Impact of mining on water resources in India. Int J Adv Res 3(10):1009–1015

    Google Scholar 

  • Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Int 30:769–783

    Article  Google Scholar 

  • Zhong L, Liu L, Yang J (2012) Characterization of heavy metal pollution in the paddy soils of Xiangyin County, Dongting lake drainage basin, central south China. Environ Earth Sci 67(8):2261–2268

    Article  Google Scholar 

Download references

Acknowledgments

The constructive and thorough reviews of anonymous reviewers are warmly acknowledged. Additionally, we would like to thank Pr. Simon Sheppared for the English language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charef Abdelkrim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sliti, N., Abdelkrim, C. & Ayed, L. Assessment of tailings stability and soil contamination of Kef Ettout (NW Tunisia) abandoned mine. Arab J Geosci 12, 73 (2019). https://doi.org/10.1007/s12517-018-4204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-018-4204-0

Keywords

Navigation