Skip to main content

Advertisement

Log in

SPECT and PET Protocols for Imaging Myocardial Viability

  • Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Radionuclide imaging techniques either using positron emission tomography (PET) or single-photon emission computed tomography (SPECT) are among the most established for the detection of viable myocardium. They offer the advantage of highest sensitivity, but are just moderately specific for the prediction of postrevascularization functional recovery. The disappointing results of various recent randomized trials have questioned the advantages of coronary revascularization in patients with ischemic cardiomyopathy and raised doubts about the helpfulness of viability imaging. Nevertheless, the increasing number of patients that come to medical attention because of heart failure symptoms supports the use of imaging modalities to recognize the underlying disease and, in case of coronary artery disease, to evaluate its extent and severity. In this scenario, radionuclide techniques have the advantage of allowing the recognition of inducible ischemia as well as myocardial viability, and will thus, remain an important tool for the work up of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Saltiel J, Lesperance J, Bourassa MG, et al. Reversibility of left ventricular dysfunction following aorto-coronary by-pass grafts. Am J Roentgenol Radium Ther Nucl Med. 1970;110:739–46.

    Article  CAS  PubMed  Google Scholar 

  2. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.

    Article  CAS  PubMed  Google Scholar 

  3. Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117:211–21.

    Article  CAS  PubMed  Google Scholar 

  4. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery. Survival data. Circulation. 1983;68:939–50.

  5. Varnauskas E. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N Engl J Med. 1988;319:332–7.

    Article  CAS  PubMed  Google Scholar 

  6. Yusuf S, Zucker D, Peduzzi P, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet. 1994;344:563–70.

    Article  CAS  PubMed  Google Scholar 

  7. Kron IL, Flanagan TL, Blackbourne LH, et al. Coronary revascularization rather than cardiac transplantation for chronic ischemic cardiomyopathy. Ann Surg. 1989;210:348–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tjan T, Kondruweit M, Scheld H, et al. The bad ventricle—revascularization vs transplantation. Thorac Cardiovasc Surg. 2000;48:9–14.

    Article  CAS  PubMed  Google Scholar 

  9. Jones R. Is it time for a randomized trial of surgical treatment of ischemic heart failure? J Am Coll Cardiol. 2001;37:1210–3.

    Article  CAS  PubMed  Google Scholar 

  10. Bravata DM, Gienger AL, McDonald KM, et al. Systematic review: the comparative effectiveness of percutaneous coronary interventions and coronary artery bypass graft surgery. Ann Intern Med. 2007;147:703–16.

    Article  PubMed  Google Scholar 

  11. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.

    Article  PubMed  Google Scholar 

  12. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology: developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J. 2008;29:2388–442.

    Article  CAS  PubMed  Google Scholar 

  13. Hunt SA, Abraham WT, Chin MH, et al. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90 [Erratum, J Am Coll Cardiol. 2009;54:2464].

    Article  PubMed  Google Scholar 

  14. Eagle KA, Guyton RA, Davidoff R, et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). Circulation. 2004;110:e340–437 [Erratum, Circulation. 2005;111:2014].

    Article  PubMed  Google Scholar 

  15. Fraker Jr TD, Fihn SD, Gibbons RJ, et al. 2007 Chronic angina focused update of the ACC/AHA 2002 guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 guidelines for the management of patients with chronic stable angina. J Am Coll Cardiol. 2007;50:2264–74.

    Article  PubMed  Google Scholar 

  16. Freeman JV, Masoudi FA. Effectiveness of implantable cardioverter defibrillators and cardiac resynchronization therapy in heart failure. Heart Fail Clin. 2013;9:59–77.

    Article  PubMed  Google Scholar 

  17. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–8.

    Article  CAS  PubMed  Google Scholar 

  18. Brunken RC, Schwaiger M, Grover-McKay M, et al. Positron emission tomography detects tissue metabolic activity in myocardial segments with persistent thallium perfusion defects. J Am Coll Cardiol. 1987;10:557–67.

    Article  CAS  PubMed  Google Scholar 

  19. Tamaki N, Ohtani H, Yamashita K, et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18 deoxyglucose. J Nucl Med. 1991;32:673–8.

    CAS  PubMed  Google Scholar 

  20. Gould KL, Yoshida K, Hess MJ, et al. Myocardial metabolism of fluorodeoxyglucose compared with cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med. 1991;32:1–9.

    CAS  PubMed  Google Scholar 

  21. Yamamoto Y, De SR, Rhodes CG, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15Owater and dynamic positron emission tomography. Circulation. 1992;86:167–78.

    Article  CAS  PubMed  Google Scholar 

  22. Knaapen P, Boellaard R, Gotte MJ, et al. The perfusable tissue index: a marker of myocardial viability. J Nucl Cardiol. 2003;10:684–91.

    Article  PubMed  Google Scholar 

  23. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008;117:103–14.

    Article  PubMed  Google Scholar 

  24. Ghosh N, Rimoldi OE, Beanlands RS, et al. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31:2984–95. A complete review about the role of all PET modalities for coronary artery disease detection and evaluation.

  25. Anagnostopoulos C, Georgakopoulos A, Pianou N, et al. Assessment of myocardial perfusion and viability by Positron Emission Tomography. Int J Cardiol. 2013;167:1737–49. Another very valuable review about PET.

  26. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines for nuclear cardiology procedures. PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. 2009;16. Available at: doi:10.1007/s12350-009-9062-4. Accessed 3 Dec 2013.

  27. Bax JJ, Cornel JH, Visser FC, et al. Prediction of improvement of contractile function in patients with ischemic ventricular dysfunction after revascularization by fluorine-18 fluorodeoxyglucose single-photon emission computed tomography. J Am Coll Cardiol. 1997;30:377–83.

    Article  CAS  PubMed  Google Scholar 

  28. Schinkel AF, Bax JJ, Poldermans D, et al. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32:375–410.

    Article  PubMed  Google Scholar 

  29. Partington SL, Kwong RY, Dorbala S. Multimodality imaging in the assessment of myocardial viability. Heart Fail Rev. 2011;16:381–95.

    Article  PubMed Central  PubMed  Google Scholar 

  30. McCall D, Zimmer U, Katz AM. Kinetics of thallium exchange in culture rat myocardial cells. Circ Res. 1985;56:370–6.

    Article  CAS  PubMed  Google Scholar 

  31. Maublant JC, Gachon P, Moms N. Hexakis (2-methoxy isobutylisonitrile) technetium99m and thallium-20 l chloride: uptake and release in cultured myocardial cells. J Nucl Med. 1988;29:48–54.

    CAS  PubMed  Google Scholar 

  32. Piwnica-Worms D, Kronauge JF, et al. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence. Circulation. 1990;82:1826–38.

    Article  CAS  PubMed  Google Scholar 

  33. Maublant JC, Moms N, Gachon P, et al. Uptake of technetium-99m-teboroxime in cultured myocardial cells: comparison with thallium201 and technetium-99m-sestamibi. J Nucl Med. 1993;34:255–9.

    CAS  PubMed  Google Scholar 

  34. Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988;12:1456–63.

    Article  CAS  PubMed  Google Scholar 

  35. Dilsizian V, Rocco TP, Freedman NM, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990;323:141–6.

    Article  CAS  PubMed  Google Scholar 

  36. Iskandrian AS, Hakki A, Kane SA, et al. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary artery bypass grafting. Am J Cardiol. 1983;51:1312–6.

    Article  CAS  PubMed  Google Scholar 

  37. Mori T, Minamiji K, Kurogane H, et al. Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med. 1991;32:1718–24.

    CAS  PubMed  Google Scholar 

  38. Ragosta M, Beller GA, Watson DD, et al. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation. 1993;87:1630–41.

    Article  CAS  PubMed  Google Scholar 

  39. Sciagrà R, Santoro GM, Bisi G, et al. Rest-redistribution thallium-201 SPECT to detect myocardial viability. J Nucl Med. 1998;39:384–90.

    PubMed  Google Scholar 

  40. Udelson JE, Coleman PS, Metherall J, et al. Predicting recovery of severe regional ventricular dysfunction: comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation. 1994;89:2552–61.

    Article  CAS  PubMed  Google Scholar 

  41. Bisi G, Sciagrà R, Santoro GM, et al. Rest technetium-99m sestamibi tomography in combination with short-term administration of nitrates: feasibility and reliability for prediction of postrevascularization outcome of asynergic territories. J Am Coll Cardiol. 1994;24:1282–9.

    Article  CAS  PubMed  Google Scholar 

  42. Sciagrà R, Bisi G, Santoro GM, et al. Comparison of baseline-nitrate technetium-99m-sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol. 1997;30:384–9.

    Article  PubMed  Google Scholar 

  43. Sciagrà R, Leoncini M, Marcucci G, et al. Technetium-99m sestamibi imaging to predict left ventricular ejection fraction outcome after revascularization in patients with chronic coronary artery disease and left ventricular dysfunction: comparison between baseline and nitrate-enhanced imaging. Eur J Nucl Med. 2001;28:680–7.

    Article  PubMed  Google Scholar 

  44. Leoncini M, Marcucci G, Sciagrà R, et al. Prediction of functional recovery in patients with chronic coronary artery disease and left ventricular dysfunction combining the evaluation of myocardial perfusion and contractile reserve using nitrate-enhanced technetium-99m Sestamibi gated single-photon emission computed tomography and dobutamine stress. Am J Cardiol. 2001;87:1346–50.

    Article  CAS  PubMed  Google Scholar 

  45. Einstein AJ, Moser KW, Thompson RC, et al. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116:1290–305.

    Article  PubMed  Google Scholar 

  46. Achenbach S, Anders K, Kalender WA. Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol. 2008;18:1188–98.

    Article  PubMed  Google Scholar 

  47. Thompson RC, Cullom SJ. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol. 2006;13:19–23.

    Article  PubMed  Google Scholar 

  48. Abraham A, Nichol G, Williams KA, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51:567–74. The PARR-2 sub-study that shows the advantages of 18 FDG PET in centers with wide experience about its use for viability detection.

  49. Spadafora M, Varrella P, Acampa W, et al. Direct imaging of viable myocardium by gated SPECT in patients with ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging. 2010;37:1730–5.

    Article  PubMed  Google Scholar 

  50. Nkoulou R, Pazhenkottil AP, Buechel RR, et al. Impact of CT attenuation correction on the viability pattern assessed by 99mTc-tetrofosmin SPECT/18F-FDG PET. Int J Cardiovasc Imaging. 2011;27:913–21.

    Article  PubMed  Google Scholar 

  51. Harms HJ, de Haan S, Knaapen P, et al. Parametric images of myocardial viability using a single 15O-H2O PET/CT scan. J Nucl Med. 2011;52:745–9.

    Article  PubMed  Google Scholar 

  52. Maureira P, Tran N, Djaballah W, et al. Residual viability is a predictor of the perfusion enhancement obtained with the cell therapy of chronic myocardial infarction: a pilot multimodal imaging study. Clin Nucl Med. 2012;37:738–42.

    Article  PubMed  Google Scholar 

  53. Raja S, Singh B, Rohit MK, et al. Comparison of nitrate augmented Tc-99m tetrofosmin gated SPECT imaging with FDG PET imaging for the assessment of myocardial viability in patients with severe left ventricular dysfunction. J Nucl Cardiol. 2012;19:1176–81.

    Article  PubMed  Google Scholar 

  54. Fukuoka Y, Nakano A, Uzui H, et al. Reverse blood flow-glucose metabolism mismatch indicates preserved oxygen metabolism in patients with revascularised myocardial infarction. Eur J Nucl Med Mol Imaging. 2013;40:1155–62.

    Article  CAS  PubMed  Google Scholar 

  55. Pagley PR, Beller GA, Watson DD, et al. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997;96:793–800.

    Article  CAS  PubMed  Google Scholar 

  56. Meluzin J, Cerny J, Frelich M, et al. Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 1998;32:912–20.

    Article  CAS  PubMed  Google Scholar 

  57. Eitzman D, Al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol. 1992;20:559–65.

    Article  CAS  PubMed  Google Scholar 

  58. Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol. 1993;22:984–97.

    Article  CAS  PubMed  Google Scholar 

  59. Tamaki N, Kawamoto M, Takahashi N, et al. Prognostic value of an increase in fluorine-18-deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol. 1993;22:1621–7.

    Article  CAS  PubMed  Google Scholar 

  60. DiCarli M, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluation prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994;73:527–33.

    Article  CAS  Google Scholar 

  61. Lee KS, Marwik TH, Cook SA, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation. 1994;90:2687–94.

    Article  CAS  PubMed  Google Scholar 

  62. Gioia G, Powers J, Heo J, et al. Prognostic value of rest-redistribution tomographic thallium-201 imaging in ischemic cardiomyopathy. Am J Cardiol. 1995;75:759–62.

    Article  CAS  PubMed  Google Scholar 

  63. Gioia G, Milan E, Giubbini R, et al. Prognostic value of tomographic rest-redistribution thallium-201 imaging in medically treated patients with coronary artery disease and left ventricular dysfunction. J Nucl Cardiol. 1996;3:150–6.

    Article  CAS  PubMed  Google Scholar 

  64. Petretta M, Cuocolo A, Bonaduce D, et al. Incremental prognostic value of thallium reinjection after stress-redistribution imaging in patients with previous myocardial infarction and left ventricular dysfunction. J Nucl Med. 1997;38:195–200.

    CAS  PubMed  Google Scholar 

  65. Cuocolo A, Petretta M, Nicolai E, et al. Successful coronary revascularization improves prognosis in patients with previous myocardial infarction and evidence of viable myocardium at thallium-201 imaging. Eur J Nucl Med. 1998;25:60–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sciagrà R, Pellegri M, Pupi A, Bolognese L, et al. Prognostic implications of Tc-99m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2000;36:739–45.

    Article  PubMed  Google Scholar 

  67. Allman KC, Shaw LJ, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  68. Bourque JM, Hasselblad V, Velazquez EJ, et al. Revascularization in patients with coronary artery disease, left ventricular dysfunction, and viability: a meta-analysis. Am Heart J. 2003;146:621–7.

    Article  PubMed  Google Scholar 

  69. Inaba Y, Chen JA, Bergmann SR. Quantity of viable myocardium required to improve survival with revascularization in patients with ischemic cardiomyopathy: a meta-analysis. J Nucl Cardiol. 2010;17:646–54.

    Article  PubMed  Google Scholar 

  70. Cleland JG, Pennel D, Ray S, et al. The carvedilol hibernation reversible ischaemia trial: marker of success (CHRISTMAS). The CHRISTMAS Study Steering Committee and Investigators. Eur J Heart Fail. 1999;1:191–6.

    Article  CAS  PubMed  Google Scholar 

  71. Beanlands RS, Nichol G, Huszti E. et al; for the PARR-2 Investigators. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  72. D’Egidio G, Nichol G, Williams KA, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2:1060–8.

    Article  PubMed  Google Scholar 

  73. Velazquez EJ, Lee KL, Deja MA, STICH Investigators, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364:1607–16. The main STICH trial article. Although not focused on viability, has questioned the role of revascularization in ischemic cardiomyopathy.

  74. Bonow RO, Maurer G, Lee KL, STICH Trial Investigators, et al. N Engl J Med. 2011;364:1617–25. The STICH sub-study about the relationship between viability and treatment strategy. A pivotal study that has caused a lively debate.

  75. Perrone-Filardi P, Pinto FJ. Looking for myocardial viability after a STICH trial: not enough to close the door. J Nucl Med. 2012;53:349–52.

    Article  PubMed  Google Scholar 

  76. Daggubati R, Arumugham P, Ferguson Jr TB. The world post-STICH: is this a "Game Changer?" A surgeon's perspective—revascularization is still the treatment of choice. Prog Cardiovasc Dis. 2013;55:470–5.

    Article  PubMed  Google Scholar 

  77. Srichai MB, Jaber WA. Viability by MRI or PET would have changed the results of the STICH trial. Prog Cardiovasc Dis. 2013;55:487–93.

    Article  PubMed  Google Scholar 

  78. Asrani NS, Chareonthaitawee P, Pellikka PA. Viability by MRI or PET would not have changed the results of the STICH trial. Prog Cardiovasc Dis. 2013;55:494–7.

    Article  PubMed  Google Scholar 

  79. Jha S, Flamm SD, Kwon DH. Revascularization in heart failure in the post-STICH era. Curr Heart Fail Rep. 2013;10:365–72.

    Article  CAS  PubMed  Google Scholar 

  80. Elamm C, Fang JC. The world post-STICH: is this a "Game Changer?" A noninvasive cardiologist's perspective: revascularization is the treatment of choice only in patients who fail medical therapy. Prog Cardiovasc Dis. 2013;55:466–9.

    Article  PubMed  Google Scholar 

  81. Allman KC. Noninvasive assessment myocardial viability: current status and future directions. J Nucl Cardiol. 2013;20:618–37. An outstanding review about the detection of myocardial viability with a valuable critical discussion about the most recent trials.

  82. Ling LF, Marwick TH, Flores DR, et al. Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia vs hibernating myocardium. Circ Cardiovasc Imaging. 2013;6:363–72.

    Article  PubMed  Google Scholar 

  83. Uebleis C, Hellweger S, Laubender RP, et al. The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging. 2013;29:1645–53.

    Article  PubMed  Google Scholar 

  84. Lehner S, Uebleis C, Schüßler F, et al. The amount of viable and dyssynchronous myocardium is associated with response to cardiac resynchronization therapy: initial clinical results using multi-parametric ECG-gated [(18)F]FDG PET. Eur J Nucl Med Mol Imaging. 2013;40:1876–83.

    Article  CAS  PubMed  Google Scholar 

  85. Sciagrà R, Giaccardi M, Porciani MC, et al. Myocardial perfusion imaging using gated SPECT in heart failure patients undergoing cardiac resynchronization therapy. J Nucl Med. 2004;45:164–8.

    PubMed  Google Scholar 

  86. Ypenburg C, Schalij MJ, Bleeker GB, et al. Extent of viability to predict response to cardiac resynchronization therapy in ischemic heart failure patients. J Nucl Med. 2006;47:1565–70.

    PubMed  Google Scholar 

  87. Adelstein EC, Saba S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J. 2007;153:105–12.

    Article  PubMed  Google Scholar 

  88. Gould KL. Does coronary flow trump coronary anatomy? J Am Coll Cardiol Imaging. 2009;2:1009–23.

    Article  Google Scholar 

  89. Neglia D, Michelassi C, Trivieri MG, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002;105:186–93.

    Article  PubMed  Google Scholar 

  90. Cecchi F, Olivotto I, Gistri R, et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35.

    Article  CAS  PubMed  Google Scholar 

  91. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52:210–7.

    Article  PubMed  Google Scholar 

  92. Bengel FM, Higuchi T, Javadi MS, et al. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;30:1–15.

    Article  Google Scholar 

  93. Schindler TH, Schelbert HR, Quercioli A, et al. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. J Am Coll Cardiol Cardiovasc Imaging. 2010;3:623–40.

    Article  Google Scholar 

  94. Fath-Ordoubadi F, Beatt KJ, Spyrou N, et al. Efficacy of coronary angioplasty for the treatment of hibernating myocardium. Heart. 1999;82:210–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Zhang X, Schindler TH, Prior JO, et al. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy. Eur J Nucl Med Mol Imaging. 2013;40:532–41.

    Article  CAS  PubMed  Google Scholar 

  96. Rischpler C, Nekolla S, Schwaiger M. PET and SPECT in heart failure. Curr Cardiol Rep. 2013;15:337.

    Article  PubMed  Google Scholar 

  97. Travin MI. Cardiac autonomic imaging with SPECT tracers. J Nucl Cardiol. 2013;20:128–43.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Roberto Sciagrà declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sciagrà.

Additional information

This article is part of the Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciagrà, R. SPECT and PET Protocols for Imaging Myocardial Viability. Curr Cardiovasc Imaging Rep 7, 9270 (2014). https://doi.org/10.1007/s12410-014-9270-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-014-9270-4

Keywords

Navigation