Skip to main content
Log in

Arsenic Accumulation in Food Crops: A Potential Threat in Bengal Delta Plain

  • Review Paper
  • Published:
Water Quality, Exposure and Health Aims and scope Submit manuscript

Abstract

The Bengal Delta Plain formed by the sedimentation of three main rivers, Ganga, Brahmaputra and Meghna along with its several tributaries and distributaries have been found to contain significant amounts of arsenic in its groundwater and sediments due to hydrogeochemical, geological and biological factors which enhance the mobilisation of arsenic. India and Bangladesh have been severely affected by occurrences of vast number of arsenic toxicity- related diseases and deaths. The problem has gained a serious magnitude due to uptake, translocation and biomagnifications of arsenic in several food crops and vegetables. A number of associated factors including the type of plants affects the bioavailability, uptake and translocation of arsenic in crops, which has been discussed in the present communication. The present paper reviews the status of arsenic contamination, mobilisation and uptake in crops of India, Bangladesh specifically along with other arsenic- affected crops worldwide and related health impacts due to the consumption of arsenic laden water and food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abedin MJ, Cressner M, Meharg AA, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

    Article  CAS  Google Scholar 

  • Acharya SK (1999) Ganges delta development during the quaternary in the Bengal basin and its relation to arsenic toxicity in ground water. In: Abstracts of the international seminar on quaternary development and coastal hydrodynamics of the Ganges delta in Bangladesh, p 17

  • Adomako EE, Deacon C, Meharg AA (2010) Variations in concentrations of arsenic and other potentially toxic elements in mine and paddy soils and irrigation waters from Southern Ghana. Water Qual Expo Health 2:115–124

    Article  CAS  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Ahsan DA, Del Valls TA (2011) Impact of arsenic contaminated irrigation water in food chain: an overview from Bangladesh. Int J Environ Res 5(3):627–638

    Google Scholar 

  • Alam MGM, Snow ET, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308:83–96

    Article  CAS  Google Scholar 

  • Alam MGM, Allinson G, Stagnitti F, Tanaka A, Westbrooke M (2002) Metal concentrations in rice and pulses of Samta village, Bangladesh. Bulletin Environ Contam Toxicol 69:323–329

    Article  CAS  Google Scholar 

  • Aleksunes LM, Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxic Pathol 35(4):459–473

    Article  CAS  Google Scholar 

  • Bagla P, Kaiser J (1996) India’s spreading health crisis draws global arsenic experts. Science 274:174–175

    Article  CAS  Google Scholar 

  • Baig JA, Kazi TG, Shah AQ, Arain MB, Afridi HI, Khan S, Kandhro GA, Naeemullah AS, Soomro AS (2010) Evaluating the accumulation of arsenic in maize (Zea mays L.) plants growing media by cloud point extraction. Food Chem Toxic 48(11):3051–3057

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic (III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Article  CAS  Google Scholar 

  • Bech J, Poschenrieder C, Llugany J, Barcelo PT, Toloias FJ (1997) Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci Total Environ 203:83–91

    Article  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  Google Scholar 

  • Bhattacharya S, Gupta K, Debnath S, Ghosh UC, Chattopadhyay DJ, Mukhopadhyay A (2012) Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: a review of the perspectives for environmental health. Toxic Environ Chem 94(3):429–441

    Article  CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2009) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ. doi:10.1007/s10333-009-0180-z

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic contaminated groundwater in alluvial aquifers from the delta plains, eastern India: option for safe drinking water supply. Int J Water Res Dev 13:79–92

    Article  Google Scholar 

  • Bhumbla DK, Keefer RF (1994) Arsenic mobilization and bioavailability in soils. Arsenic Environ 1:51–82

    Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic-a review part II oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31(2):97–107

    Article  CAS  Google Scholar 

  • Borovička J (2004) New locality for Sarcosphaera coronaria. Mykologický Sborník 81: 97–100

    Google Scholar 

  • Brammer H (2008) Threat of arsenic to agriculture in India, Bangladesh and Nepal. Econ Polit Wkly 22:79–84

    Google Scholar 

  • Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Lopez MVM, Lopez DL, Jean JS, Cornejo L, Macedo LFL, Filho AT (2011) Arsenic in the human food chain: the Latin American perspective. Sci Total Environ 429:92–106

    Google Scholar 

  • Carbonell-Barrachina AA, Aarabi MA, Delaune RD, Gambrell RP, Patrick WJH (1998) Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. J Environ Sci Health 33:45–66

    Article  Google Scholar 

  • Chakraborti D, Sengupta MK, Rahman MM, Ahamed S, Chowdhury UK, Hossain A, Mukherjee SC, Pati S, Saha KC, Dutta RN (2004) Groundwater arsenic contamination and its health effects in the Ganga–Meghna–Brahmaputra Plain. J Environ Monit 6(6):74N–83N

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58:3–22

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Nayak B, Pal A, Sengupta MK, Hossain MA, Ahamed S, Sahu M, Saha KC, Mukherjee SC, Pati S, Dutta RN, Quamruzzaman Q (2013) Groundwater arsenic contamination in Ganga–Meghna–Brahmaputra plain, its health effects and an approach for mitigation. Environ Earth Sci 70:1993– 2008

    Article  Google Scholar 

  • Chaurasia N, Mishra A, Pandey SK (2012) Finger print of arsenic contaminated water in India: a review. J Forensic Res 3:172

    Google Scholar 

  • Chowdhury UK, Biswas BK, Roychowdhury T, Samanta G, Mandal BK, Basu GK, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Zaman QQ, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  CAS  Google Scholar 

  • Christopher OA, Haque AMM (2012) Arsenic contamination in irrigation water for rice production in Bangladesh: A review. Trends Appl Sci Res 7(5):331–349

    Article  CAS  Google Scholar 

  • Cobb GP, Sands K, Waters M, Wixson BG, Dorward-King E (2000) Accumulation of heavy metals by vegetables grown in mine wastes. Environ Toxic Chem 19:600–607

    Article  CAS  Google Scholar 

  • Cullen WR, McBride MC, Pickett AW, Reglinski J (1984) The wood preservative chromated copper arsenate is a substrate for trimethylarsine biosynthesis. Appl Environ Microbiol 47:443–444

    CAS  Google Scholar 

  • Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH (2004) Arsenic concentrations in rice, vegetables and fish in Bangladesh a preliminary study. Environ Int 30:383–387

    Article  CAS  Google Scholar 

  • Datta DV, Kaul MK (1976) Arsenic contents in drinking water in villages of Northern India. J Assoc Phys Ind 24:599–604

    CAS  Google Scholar 

  • Department of Public Health Engineering (DPHE) (1999) Main report and vol S1–S5, report on Phase I, Groundwater studies for arsenic contamination in Bangladesh, Dhaka, Bangladesh

  • Deuel LE, Swoboda AR (1972) Arsenic solubility in a reduced environment. Soil Sci Soc Am Proc 36:276–278

    Article  CAS  Google Scholar 

  • Dittmar J, Voegelin A, Maurer F, Roberts LC, Hug SJ, Saha GC (2010) Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies. Environ Sci Technol 44:8842–8

    Article  CAS  Google Scholar 

  • Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals. Environ Sci Technol 39(6):1827–1834

    Article  CAS  Google Scholar 

  • Farid ATM, Roy KC, Hossain KM, Sen R (2003) A study of arsenic contaminated irrigation water and its carried over effect on vegetable. In: Ahmed F, Ali MA, Adeel Z (eds) Fate of arsenic in the environment. Bangladesh University of Engineering and Technology, Dhaka, pp 113–121

    Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  CAS  Google Scholar 

  • Fryxell GE, Liu J, Hauser TA, Nie Z, Ferris KF, Mattigod S, Gong M, Hallen RT (1999) Design and synthesis of selective mesoporous anion traps. Chem Mater 11:2148–2154

    Article  CAS  Google Scholar 

  • Ghosh A, Singh SK, Bose N, Chowdhary S (2007) Arsenic contaminated aquifers: a study of the Ganga levee zone in Bihar, India. Symposium on arsenic: the geography of a global problem, Royal Geographical Society, London, 29 August 2007

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    Article  CAS  Google Scholar 

  • Guha Mazumder DN (2008) Chronic arsenic toxicity and human health. Indian J Med Res 128(4):436–47

    CAS  Google Scholar 

  • Guha Mazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborty D et al (1998) Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol 27:871–7

    Article  CAS  Google Scholar 

  • Halder D, Bhowmick S, Biswas A, Chatterjee D, Nriagu J, Guha Mazumder D et al (2012) Risk of arsenic exposure from drinking water and dietary components: implications for risk management in rural Bengal. Environ Sci Technol. doi:10.1021/es303522s

  • Halder D, Bhowmick S, Biswas A, Chatterjee D, Nriagu J, Mazumder DNG, Slejkovec Z, Jacks G, Bhattacharya P (2013) Risk of arsenic exposure from drinking water and dietary components: implications for risk management in rural Bengal. Environ Sci Technol 47:1120–1127

    Article  CAS  Google Scholar 

  • Hambsch B, Rau B, Brauch HJ (1995) Determination of arsenic(III) for the investigation of the microbial oxidation of arsenic(III)–arsenic(V). Acta Hydrochim Hydrobiol 23:166–172

    Article  CAS  Google Scholar 

  • Hels O, Hassan N, Tetens I, Thilsted SH (2003) Food consumption, energy and nutrient intake and nutritional status in rural Bangladesh: changes from 1981–1982 to 1995–1996. Eur J Clin Nutr 57:586– 594

    Google Scholar 

  • Hering JG, Chen PY, Wilkie JA, Elimelech M (1996) Arsenic removal by ferric chloride. J Am Water Works Assoc 88:155–167

    CAS  Google Scholar 

  • Hering JG, Chen PY, Wilkie JA, Menachem E (1997) Arsenic removal from drinking water during coagulation. J Environ Eng (ASCE) 123(8):800–807

    Article  CAS  Google Scholar 

  • Hossain MB, Jahiruddin M, Panaullah GM, Loeppert RH, Islam MR, Duxbury JM (2008) Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus. Environ Pollut 156:739–44

    Article  CAS  Google Scholar 

  • Huq SMI, Alam MD (2005) A handbook on analyses of soil, plant, and water, BACER-DU. University of Dhaka, Bangladesh

    Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T (2006) Rice plants take up iron as an \(\text{ Fe }^{3+}\)-phytosiderophore and as \(\text{ Fe }^{2+}\). Plant J 45:335–346

    Article  CAS  Google Scholar 

  • Islam MR, Brammer H, Rahman GKMM, Raab A, Jahiruddin M, Solaiman ARM, Meharg AA, Norton GJ (2012) Arsenic in rice grown in low-arsenic environments in Bangladesh. Water Qual Expo Health 4:197–208

    Article  CAS  Google Scholar 

  • Islam MR, Jahiruddin M, Rahman GKMM, Miah MAM, Farid ATM, Panaullah GM et al (2004) Assessment of arsenic in the water-soil-plant systems in Gangetic flood plains of Bangladesh. Asian J Plant Sci 3:489–493

    Article  Google Scholar 

  • Islam SM, Tooley MJ (1999) Coastal and sea level changes during the Holocene in Bangladesh. Elsevier Sci Quat Int 55:61–75

    Article  Google Scholar 

  • Jha VC, Bairagya H (2011) Environmental impact of flood and their sustainable management in deltaic region of West Bengal, India. Caminhos De Geografia, revista online publication, ISSN 1678–6343. http://www.ig.ufu.br/revista/caminhos.html

  • Johnson SY, Alam AMN (1991) Sedimentation and tectonics of the Sylhet trough, Bangladesh: geological Society of America. Bulletin 103:1513–1527

    Google Scholar 

  • Kar S, Das S, Jean JS, Chakraborty S, Liu CC (2013) Arsenic in the water-soil-plant system and the potential health risks in the coastal part of Chianan plain, Southwestern Taiwan. J Asian Earth Sci 77:295–302

    Article  Google Scholar 

  • Khan MA, Islam MR, Panaullah GM, Duxbury JM, Jahiruddin M, Loeppert RH (2010) Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant Soil 333:263–74

    Article  CAS  Google Scholar 

  • Kinniburgh DG, Smedley PL (eds) (2001) Arsenic contamination of groundwater in Bangladesh, vol 4. British Geological Survey, Keyworth

  • Komar KM, Ma LQ, Rockwood D, Syed A (1998) Identification of arsenic tolerant and hyperaccumulating plants from arsenic contaminated soils in Florida. Agron Abstr 343:13–19

    Google Scholar 

  • Koyama T (1975) Arsenic in soil-plant systems. Jpn J Soil Sci Manure 46(11):491–502

    Google Scholar 

  • Kuehl SA, Allison MA, Goodbred SL, Kudrass H (2005) The Ganges-Brahmaputra delta. SEPM Special Publication 83 (Society for Sedimentary Geology), ISBN 1-56576-113-8, p 413–434

  • Lawgali YF, Meharg AA (2011) Levels of arsenic and other trace elements in Southern Libyan agricultural irrigated soil and non-irrigated soil projects. Water Qual Expo Health 3:79–90

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–6

    Article  CAS  Google Scholar 

  • Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA (2009) Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol 184(1):193–201

    Article  CAS  Google Scholar 

  • Maharjan M, Watanabe C, Ahmad SA, Ohtsuka R (2005) Arsenic contamination in drinking water and skin manifestations in lowland Nepal: the first community-based survey. Am J Trop Med Hyg 73(2):477–479

    CAS  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Maity JP, Kar S, Liu JH, Jean JS, Chen CY, Bundschuh J, Santra SC, Liu CC (2011) The potential for reductive mobilization of arsenic [As(V) to As(III)] by OSBH 2 ( Pseudomonas stutzeri) and OSBH 5 ( Bacillus cereus) in an oil-contaminated site. J Environ Sci Health-Part A Toxic/Hazard Subst Environ Eng 46(11):1239–1246

    Article  CAS  Google Scholar 

  • Maity JP, Nath B, Kar S, Chen CY, Banerjee S, Jean JS, Liu MY, Centeno JA, Bhattacharya P (2012) Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study. Environ Geochem Health 34(5):563–574

    Article  CAS  Google Scholar 

  • Mallick S, Rajgopal NR (1996) Groundwater development in the arsenic affected alluvial belt of West Bengal- some questions. Curr Sci 70:956–958

    Google Scholar 

  • Mandal BK, Chowdhury TR, Samanta G, Basu GK, Chowdhury PP, Chanda CR, Lodh D, Karan NK, Dhar RK, Tamili DK, Das D, Saha KC, Chakraborti D (1996) Arsenic in groundwater in seven districts of West Bengal, India the biggest arsenic calamity in the world. Curr Sci 70:976–986

    CAS  Google Scholar 

  • Marin AP, Masscheleyn PH, Patrick WH (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253

    Article  CAS  Google Scholar 

  • Marquez EB, Gurian PL, Barud-Zubillaga A, Goodell PC (2011) Correlates of arsenic mobilization into the groundwater in El Paso, Texas. Air Soil Water Res 4:19–29

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic press, London, p 889

    Google Scholar 

  • McArthur JM, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117

    Article  CAS  Google Scholar 

  • McCutcheon Schnoor (2003) Phytoremediation: transformation and control of contaminants. John Wiley, Hoboken

    Book  Google Scholar 

  • Meharg AA (2004) Arsenic in rice–understanding a new disaster for South-East Asia. Tr Plant Sci 9:415–417

    Article  CAS  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soil: implication for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234

    Article  CAS  Google Scholar 

  • Mestrot A, Uroic MK, Plantevin T, Islam MR, Krupp E, Feldmann J, Meharg AA (2009) Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil. Environ Sci Technol 43:8270–8275

    Article  CAS  Google Scholar 

  • Mitra AK, Bose BK et al (2002) Arsenic related health problems among hospital patients in Southern Bangladesh. J Health Popul Nutr 20(3):198–204

    Google Scholar 

  • Mokashi SA, Paknikar KM (2002) Arsenic (III) oxidizing microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Lett Appl Microbiol 34:258–262

    Article  CAS  Google Scholar 

  • Mukherjee A, Fryar AE (2008) Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal Basin, West Bengal. India Appl Geochem 23(4):863–894

    Article  CAS  Google Scholar 

  • Nickson R, Sengupta C, Mitra P, Dave SN, Banerjee AK, Bhattacharya A, Basu S, Kakoti N, Moorthy NS, Wasuja M, Kumar M, Mishra DS, Ghosh A, Vaish DP, Srivastava AK, Tripathi RM, Singh SN, Prasad R, Bhattacharya S, Deverill P (2007) Current knowledge on the distribution of arsenic in groundwater in five states of India. J Environ Sci Health A Toxic Hazard Subst Environ Eng 42:1707–1718

    Article  CAS  Google Scholar 

  • Norra S, Berner ZA, Agarwala P, Wagner F, Chandrasekharam D, Stuben D (2005) Impact of irrigation with arsenic rich groundwater on soil and crops: a geochemical case study in West Bengal delta plain, India. Appl Geochem 20:1890–1906

    Article  CAS  Google Scholar 

  • Ohno K, Yanase T, Matsuo Y, Kimura T, Rahman MH, Magara Y et al (2007) Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci Total Environ 381:68–76

    Article  CAS  Google Scholar 

  • Otte ML (1991) Heavy metals and arsenic in vegetation of salt marshes and floodplains. Ph.D. thesis, Vrije Universiteit Amsterdam, The Netherland

  • Rahman MM, Asaduzzaman M, Naidu R (2011) Arsenic exposure from rice and water sources in the Noakhali district of Bangladesh. Water Qual Expo Health 3:1–10

    Article  CAS  Google Scholar 

  • Rahman MA, Maki TK, Kadohashi (2011) Transport of DMAA and MMAA into rice ( Oryza sativa L.) roots. Environ Exp Bot 72:41–46

    Article  CAS  Google Scholar 

  • Rahman MA (2002) Arsenic and contamination of drinking-water in Bangladesh: a public-health perspective. J Health Popul Nutr 20(3):193–197

    Google Scholar 

  • Rahman MA, Hasegava H, Rahman HM, Rahman MA, Miah MAM (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948

    Article  CAS  Google Scholar 

  • Rahman MM, Sengupta MK, Ahamed S, Chowdhury UK, Hossain MA, Das B, Lodh D, Saha KC, Pati S, Kaies I, Barua A, Chakraborti D (2005) The magnitude of arsenic contamination in groundwater in groundwater and its health effects to the inhabitants of the Jalangi-one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ 338:189–200

    Article  CAS  Google Scholar 

  • Rajakovic V, Mitrovicm M (1992) Arsenic removal from water by chemisorption filters. Environ Pollut 75(3):279–287

    Article  CAS  Google Scholar 

  • Ramana A, Sengupta A (1992) Removing Se(IV) and As(V) oxyanions with tailored chelating polymers. J Environ Eng 118:755–775

    Article  CAS  Google Scholar 

  • Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In: Calderon R, Chapell WR, Abernathy CO (eds) Arsenic Exposure and Health Effects VI. Elsevier, Oxford, pp 53–78

    Google Scholar 

  • Ravenscroft P (2003) Overview of the hydrogeology of Bangladesh. In: Rahman AA, Ravenscroft P (eds) Groundwater resources development in Bangladesh. University Press, Dhaka, pp 43–86

    Google Scholar 

  • Ravenscroft P, Richards K, Brammer H (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, New York

    Book  Google Scholar 

  • Ravenscroft P, Burgess WG, Ahmed KM, Burren M, Perrin J (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeo J 13 (5–6):727–751

    Google Scholar 

  • Rofkar RJ, Dwyer DF (2011) Effects of light regime, temperature, and plant age on uptake of arsenic by Spartina pectinata and Carex stricta. Int J Phytorem 13:528–537

    Article  CAS  Google Scholar 

  • Roychowdhury T, Uchina T, Tokunaga H, Ando M (2002) Survey of arsenic in food composits from arsenic affected area of West Bengal, India. Food Chem Toxic 40:1611–1621

    Article  CAS  Google Scholar 

  • Sadiq M (1986) Solublity relationships of arsenic in calcareous soils and its uptake by corn. Plant Soil 91:241–248

    Article  CAS  Google Scholar 

  • Sadiq M et al (1983) Environmental behaviour of arsenic in soils: theoretical. Water Air Soil Pollut 20(4):369–377

    Article  CAS  Google Scholar 

  • Saha KC (1995) Chronic arsenical dermatoses from tube-well water in West Bengal during 1983–1987. Indian J Dermatol 40:1–12

    Google Scholar 

  • Samal AC (2005) An investigation on accumulation of arsenic in ecosystem of Gangetic West Bengal and assessment of potential health risk. Ph.D thesis, University of Kalyani, West Bengal

  • Samal AC, Kar S, Bhattacharya P, Santra SC (2011) Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 46(11):1259–1265

    Article  CAS  Google Scholar 

  • Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J (2013) Arsenic in foodchain and community health risk: a study in Gangetic West Bengal. International symposium on environmental science and technology (ISEST).

  • Sen J, Chaudhuri ABD (2008) Arsenic effects on pregnancy in West Bengal. Arh Hig Rada Toksikol 59:271–275

    Article  CAS  Google Scholar 

  • Shrestha RR, Shrestha MP, Upadhyay NP, Pradhan R, Khadka R, Maskey A, Maharjan M, Tuladhar S, Dahal BM, Shrestha K (2003) Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J Environ Sci Health A38:185–200

    Article  CAS  Google Scholar 

  • Singh AK (2004) Arsenic contamination in groundwater of North Eastern India. In: Jain CK, Trivedi RC, Sharma KD (eds) Hydrology with focal theme on water quality. Allied Publishers, New Delhi, pp 255–262

    Google Scholar 

  • Smith LA, Alleman BC, Copley-Graves L (1994) Biological treatment options. In: Means JL, Hinchee RE (eds) Emerging technology for bioremediation of metals. Lewis Publishers, Boca Raton, pp 1–12

    Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin World Health Organ 78(9):1093–1103

    CAS  Google Scholar 

  • Smith A, Lopipero P, Bates M, Steinmaus C (2002) Arsenic epidemiology and drinking water standards. Science 296:2145–2146

    Article  CAS  Google Scholar 

  • Smith PG, Koch I, Reimer KJ (2008) Uptake, transport and transformation of arsenate in radishes (Raphanus sativus). Sci Total Environ 390:188–197

    Article  CAS  Google Scholar 

  • Srivastava S, Vladykovskaya EN, Haberzettl P, Srinivas DS, D’Souza SE, Christopher SJ (2009) Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/-mice. Toxic Appl Pharmacol 241:90–100

    Article  CAS  Google Scholar 

  • Stijve et al (1990) Arsenic accumulation in some higher fungi. Persoonia 14(2):161–166

    Google Scholar 

  • Tanvir M, Chowdhury A, Meharg AA, Deacon C, Hossain M, Norton GJ (2012) Hydrogeochemistry and arsenic contamination of groundwater in the Haor Basins of Bangladesh. Water Qual Expo Health 4:67–78

    Article  CAS  Google Scholar 

  • Tossell RW, Binard K, Raferty MT (2000) Uptake of arsenic by Tamarisk and Eucalyptus under saline conditions. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VC (eds) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Presss, Columbus, pp 485–492

    Google Scholar 

  • Tripathi R, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis JM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  Google Scholar 

  • Tsutsumi M (1983) Comparative toxicity of arsenite and arsenate to rice seedling under various levels of phosphate supply. Soil Sci Plant Nutr 29:63–69

    Article  CAS  Google Scholar 

  • Uddin A, Lundberg N (2004) Miocene sedimentation and subsidence during continent-continent collision, Bengal Basin, Bangladesh. Sed Geol 164:131–146

    Article  Google Scholar 

  • Uddin R, Huda NH (2011) Arsenic poisoning in Bangladesh. Oman Med J 26(3):207

    Article  Google Scholar 

  • Van Geen A, Rose J, Thoral S, Garnier JM, Zheng Y, Bottero JY (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions Part II evidence from sediment incubations. Geochem Cosmochim 68:3475–3486

    Article  CAS  Google Scholar 

  • Velixarov S, Crespo JG, Reis MA (2004) Removal of inorganic anions from drinking water supplies by membrane bio/process. Rev Environ Sci Biotechnol 3(4):361–380

    Article  CAS  Google Scholar 

  • Wang H-S, Sthiannopkao S, Chen ZJ, Man YB, Du J, Xing GH, Kim KW, Yasin MSM, Hashim JH, Wong MH (2012) Arsenic concentration in rice, fish, meat and vegetables in Combodia: a preliminary risk assessment. Environ Geochem Health 35:745–755. doi:10.1007/s10653-013-9532-0

    Article  CAS  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology 130:1552–1561

    Article  CAS  Google Scholar 

  • Watanabe C, Kawata A, Sudo N, Sekiyama M, Inaoka T, Bae M, Ohtsuka R (2004) Water intake in an Asian population living in arsenic-contaminated area. Toxic Appl Pharmacol 198:272–282

    Article  CAS  Google Scholar 

  • Wei S, Ma LQ, Saha U, Mathews S, Sundaram S, Rathinasabapathi B, Zhou Q (2010) Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environ Pollut 158:1530–1535

    Article  CAS  Google Scholar 

  • WHO (1993) Guidelines for drinking-water quality, vol 1, 2nd edn, World Health Organization, Geneva

  • WHO (2001) Environmental Health Criteria 224: arsenic and arsenic compounds. WHO, Geneva

  • Wickramasinghe SR, Han B, Zimbron J, Shen Z, Karim MN (2004) Arsenic removal by coagulation and filtration: comparison of groundwaters from the United States and Bangladesh. Desalination 169(3):231–244

    Article  CAS  Google Scholar 

  • Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol 40:4903–4908

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  Google Scholar 

  • Yadava KP, Tyagi BS, Singh VN (1988) Removal of arsenic (III) from aqueous solution by china clay. Environ Technol Lett 9:1233–1244

    Article  CAS  Google Scholar 

  • Yan X-P, Kerrich R, Hendry MJ (2000) Distribution of arsenic (III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim Cosmochim Acta 64:2637–2648

    Article  CAS  Google Scholar 

  • Yuossef FL, Meharg AA (2011) Levels of arsenic and other trace elements in Southern Libyan agricultural irrigated soil and non-irrigated soil projects. Water Qual Expo Health 3:79–90

    Article  CAS  Google Scholar 

  • Zaw M, Emett MT (2002) Arsenic removal from water using advanced oxidation processes. Toxic Lett 133(1):113–118

    Article  CAS  Google Scholar 

  • Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytolo 156:27–31

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhao K, Song J, Fan H et al (2010) Growth response to ionic and osmotic stress in NaCl in salt-tolerant and salt-sensitive maize. J Int Plant Biol 52:468–475

    Article  CAS  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Department of Science and Technology, New Delhi for funding a research project under SERB Young Scientist scheme for studies on bioavailability, uptake and translocation of arsenic in Sahibganj areas of Jharkhand, India. The authors are also thankful to Dr. J.P. Maity (National Chung Cheng University, Taiwan) and Dr. Atanu Bhattacharya (Central University of Gujarat, India) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukalyan Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Alam, M.O., Bhattacharya, T. et al. Arsenic Accumulation in Food Crops: A Potential Threat in Bengal Delta Plain. Water Qual Expo Health 6, 233–246 (2014). https://doi.org/10.1007/s12403-014-0122-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-014-0122-x

Keywords

Navigation