Skip to main content

Advertisement

Log in

Recent Advances in Cold Plasma Technology for Food Processing

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Cold plasma (CP) is a novel non-thermal technology and has marked a new trend in both the sectors of agriculture and food processing for their safety and quality. This review describes an overview on the effects of CP with respect to microbial decontamination, enzyme denaturation, pesticide degradation, food allergens, polyphenols, food packaging, and many other physiological processes. Furthermore, mechanisms and applications involving different aspects related to cold plasma are discussed. The recent studies on cold plasma referred mainly with the interactions of reactive species and target food commodity. Finally, the future prospects and challenges that could help in rendering substantial benefits of CP to the food industries and researchers, particularly in upscaling this eco-friendly technology, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gavahian M, Khaneghah AM (2020) Cold plasma as a tool for the elimination of food contaminants: recent advances and future trends. Crit Rev Food Sci Nutr 60(9):1581–1592. https://doi.org/10.1080/10408398.2019.1584600

    Article  CAS  PubMed  Google Scholar 

  2. Langmuir I (1928) Oscillations in ionized gases. Proc Natl Acad Sci USA 14(8):627. https://doi.org/10.1073/pnas.14.8.627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dasan BG, Onal-Ulusoy B, Pawlat J, Diatczyk J, Sen Y, Mutlu M (2017) A new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food Bioprocess Technol 10(4):650–661. https://doi.org/10.1007/s11947-016-1847-2

    Article  CAS  Google Scholar 

  4. Ekezie FGC, Sun DW, Cheng JH (2017) A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69:46–58. https://doi.org/10.1016/j.tifs.2017.08.007

    Article  CAS  Google Scholar 

  5. Peng P, Schiappacasse C, Zhou N, Addy M, Cheng Y, Zhang Y, Anderson E, Chen D, Wang Y, Liu Y, Chen P, Ruan R (2019) Plasma in situ gas-liquid nitrogen fixation using concentrated high-intensity electric field. J Phys D Appl Phys 52:494001. https://doi.org/10.1088/1361-6463/ab3ea6

    Article  CAS  Google Scholar 

  6. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J (2015) Nonthermal plasma–a tool for decontamination and disinfection. Biotechnol Adv 33(6):1108–1119. https://doi.org/10.1016/j.biotechadv.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  7. Han Y, Cheng JH, Sun DW (2019) Activities and conformation changes of food enzymes induced by cold plasma: a review. Crit Rev Food Sci Nutr 59(5):794–811. https://doi.org/10.1080/10408398.2018.1555131

    Article  CAS  PubMed  Google Scholar 

  8. Mandal R, Singh A, Singh AP (2018) Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci Technol 80:93–103. https://doi.org/10.1016/j.tifs.2018.07.014

    Article  CAS  Google Scholar 

  9. Bessaire T, Perrin I, Tarres A, Bebius A, Reding F, Theurillat V (2019) Mycotoxins in green coffee: occurrence and risk assessment. Food Control 96:59–67. https://doi.org/10.1016/j.foodcont.2018.08.033

    Article  CAS  Google Scholar 

  10. Khaneghah AM, Fakhri Y, Raeisi S, Armoon B, Sant’Ana AS (2018) Prevalence and concentration of ochratoxin A, zearalenone, deoxynivalenol and total aflatoxin in cereal-based products: a systematic review and meta-analysis. Food Chem Toxicol 118:830–848. https://doi.org/10.1016/j.fct.2018.06.037

    Article  CAS  Google Scholar 

  11. Khaneghah AM, Eş I, Raeisi S, Fakhri Y (2018) Aflatoxins in cereals: state of the art. J Food Saf 38(6):e12532. https://doi.org/10.1111/jfs.12532

    Article  CAS  Google Scholar 

  12. Fathabad AE, Shariatifar N, Moazzen M, Nazmara S, Fakhri Y, Alimohammadi M, Azari A, Khaneghah AM (2018) Determination of heavy metal content of processed fruit products from Tehran’s market using ICP-OES: a risk assessment study. Food Chem Toxicol 115:436–446. https://doi.org/10.1016/j.fct.2018.03.044

    Article  CAS  PubMed  Google Scholar 

  13. Shahsavani A, Fakhri Y, Ferrante M, Keramati H, Zandsalimi Y, Bay A, Pouya SRH, Moradi B, Bahmani Z, Mousavi Khaneghah A (2017) Risk assessment of heavy metals bioaccumulation: fished shrimps from the Persian Gulf. Toxin Rev 36(4):322–330. https://doi.org/10.1080/15569543.2017.1312451

    Article  CAS  Google Scholar 

  14. Yousefi M, Shemshadi G, Khorshidian N, Ghasemzadeh-Mohammadi V, Fakhri Y, Hosseini H, Khaneghah AM (2018) Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: a risk assessment study. Food Chem Toxicol 118:480–489. https://doi.org/10.1016/j.fct.2018.05.063

    Article  CAS  PubMed  Google Scholar 

  15. Amirahmadi M, Kobarfard F, Pirali-Hamedani M, Yazdanpanah H, Rastegar H, Shoeibi S, Mousavi Khaneghah A (2017) Effect of Iranian traditional cooking on fate of pesticides in white rice. Toxin Rev 36(3):177–186. https://doi.org/10.1080/15569543.2017.1301956

    Article  CAS  Google Scholar 

  16. Crevel RW, Baumert JL, Luccioli S, Baka A, Hattersley S, Hourihane JOB, Ronsmans S, Timmermans F, Ward R, Chung YJ (2014) Translating reference doses into allergen management practice: challenges for stakeholders. Food Chem Toxicol 67:277–287. https://doi.org/10.1016/j.fct.2014.01.033

    Article  CAS  PubMed  Google Scholar 

  17. Razzaghi N, Ziarati P, Rastegar H, Shoeibi S, Amirahmadi M, Conti GO, Ferrante M, Fakhri Y, Khaneghah AM (2018) The concentration and probabilistic health risk assessment of pesticide residues in commercially available olive oils in Iran. Food Chem Toxicol 120:32–40. https://doi.org/10.1016/j.fct.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  18. Schaarschmidt S (2016) Public and private standards for dried culinary herbs and spices–Part I: standards defining the physical and chemical product quality and safety. Food Control 70:339–349. https://doi.org/10.1016/j.foodcont.2016.06.004

    Article  CAS  Google Scholar 

  19. Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141(1):41–58. https://doi.org/10.1016/j.jaci.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  20. Cheng L, Sun DW, Zhu Z, Zhang Z (2017) Emerging techniques for assisting and accelerating food freezing processes: a review of recent research progresses. Crit Rev Food Sci Nutr 57(4):769–781. https://doi.org/10.1080/10408398.2015.1004569

    Article  PubMed  Google Scholar 

  21. Pu YY, Sun DW (2017) Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualization of moisture content distribution. Biosys Eng 156:108–119. https://doi.org/10.1016/j.biosystemseng.2017.01.006

    Article  Google Scholar 

  22. Yang Q, Sun DW, Cheng W (2017) Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. J Food Eng 192:53–60. https://doi.org/10.1016/j.jfoodeng.2016.07.015

    Article  CAS  Google Scholar 

  23. Muranyi P, Wunderlich J, Heise M (2007) Sterilization efficiency of a cascaded dielectric barrier discharge. J Appl Microbiol 103(5):1535–1544. https://doi.org/10.1111/j.1365-2672.2007.03385.x

    Article  CAS  PubMed  Google Scholar 

  24. Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljević V, O’donnell CP, Bourke P, Keener KM, Cullen PJ (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35(1):5–17. https://doi.org/10.1016/j.tifs.2013.10.009

    Article  CAS  Google Scholar 

  25. Vesel A, Mozetic M (2012) Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 86(6):634–637. https://doi.org/10.1016/j.vacuum.2011.07.005

    Article  CAS  Google Scholar 

  26. Gavahian M, Chu YH, Khaneghah AM, Barba FJ, Misra NN (2018) A critical analysis of the cold plasma induced lipid oxidation in foods. Trends Food Sci Technol 77:32–41. https://doi.org/10.1016/j.tifs.2018.04.009

    Article  CAS  Google Scholar 

  27. López M, Calvo T, Prieto M, Múgica-Vidal R, Muro-Fraguas I, Alba-Elías F, Alvarez-Ordóñez A (2019) A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications. Front Microbiol 10:622. https://doi.org/10.3389/fmicb.2019.00622

    Article  PubMed  PubMed Central  Google Scholar 

  28. Frías E, Iglesias Y, Alvarez-Ordóñez A, Prieto M, González-Raurich M, López M (2020) Evaluation of cold atmospheric pressure plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: impact on microbiological, sensorial and functional quality attributes. Food Res Int 129:108859. https://doi.org/10.1016/j.foodres.2019.108859

    Article  CAS  PubMed  Google Scholar 

  29. Hertwig C, Meneses N, Mathys A (2018) Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends Food Sci Technol 77:131–142. https://doi.org/10.1016/j.tifs.2018.05.011

    Article  CAS  Google Scholar 

  30. Jayasena DD, Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C (2015) Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiol 46:51–57. https://doi.org/10.1016/j.fm.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  31. Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T (2017) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91. https://doi.org/10.1016/j.foodcont.2016.12.021

    Article  CAS  Google Scholar 

  32. Muhammad AI, Li Y, Liao X, Liu D, Ye X, Chen S, Hu Y, Wang J, Ding T (2019) Effect of dielectric barrier discharge plasma on background microflora and physicochemical properties of tiger nut milk. Food Control 96:119–127. https://doi.org/10.1016/j.foodcont.2018.09.010

    Article  CAS  Google Scholar 

  33. Prasad P, Mehta D, Bansal V, Sangwan RS (2017) Effect of atmospheric cold plasma (ACP) with its extended storage on the inactivation of Escherichia coli inoculated on tomato. Food Res Int 102:402–408. https://doi.org/10.1016/j.foodres.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  34. Yannam SK, Estifaee P, Rogers S, Thagard SM (2018) Application of high voltage electrical discharge plasma for the inactivation of Escherichia coli ATCC 700891 in tangerine juice. LWT 90:180–185. https://doi.org/10.1016/j.lwt.2017.12.018

    Article  CAS  Google Scholar 

  35. Yong HI, Lee SH, Kim SY, Park S, Park J, Choe W, Jo C (2019) Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innov Food Sci Emerg Technol 53:78–84. https://doi.org/10.1016/j.ifset.2017.09.005

    Article  CAS  Google Scholar 

  36. Bußler S, Ehlbeck J, Schlüter OK (2017) Pre-drying treatment of plant related tissues using plasma processed air: impact on enzyme activity and quality attributes of cut apple and potato. Innov Food Sci Emerg Technol 40:78–86. https://doi.org/10.1016/j.ifset.2016.05.007

    Article  CAS  Google Scholar 

  37. Kang JH, Roh SH, Min SC (2019) Inactivation of potato polyphenol oxidase using microwave cold plasma treatment. J Food Sci 84(5):1122–1128. https://doi.org/10.1111/1750-3841.14601

    Article  CAS  PubMed  Google Scholar 

  38. Porto E, Filho EGA, Silva LMA, Fonteles TV, do Nascimento RBR, Fernandes FA, de Brito ES, Rodrigues S (2020) Ozone and plasma processing effect on green coconut water. Food Res Int 131:109000. https://doi.org/10.1016/j.foodres.2020.109000

    Article  CAS  PubMed  Google Scholar 

  39. Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, Ragni L, Rocculi P (2016) Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol 33:225–233. https://doi.org/10.1016/j.ifset.2015.12.022

    Article  CAS  Google Scholar 

  40. Tolouie H, Mohammadifar MA, Ghomi H, Yaghoubi AS, Hashemi M (2018) The impact of atmospheric cold plasma treatment on inactivation of lipase and lipoxygenase of wheat germs. Innov Food Sci Emerg Technol 47:346–352. https://doi.org/10.1016/j.ifset.2018.03.002

    Article  CAS  Google Scholar 

  41. Chen G, Dong S, Zhao S, Li S, Chen Y (2019) Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Ind Crops Prod 129:318–326. https://doi.org/10.1016/j.indcrop.2018.11.072

    Article  CAS  Google Scholar 

  42. Cui H, Bai M, Lin L (2018) Plasma-treated poly (ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohyd Polym 179:360–369. https://doi.org/10.1016/j.carbpol.2017.10.011

    Article  CAS  Google Scholar 

  43. Wu X, Liu Q, Luo Y, Murad MS, Zhu L, Mu G (2020) Improved packing performance and structure-stability of casein edible films by dielectric barrier discharges (DBD) cold plasma. Food Packag Shelf Life 24:100471. https://doi.org/10.1016/j.fpsl.2020.100471

    Article  Google Scholar 

  44. Darmanin M, Kozak D, de Oliveira Mallia J, Blundell R, Gatt R, Valdramidis VP (2020) Generation of plasma functionalized water: antimicrobial assessment and impact on seed germination. Food Control 113:107168. https://doi.org/10.1016/j.foodcont.2020.107168

    Article  CAS  Google Scholar 

  45. Li L, Li J, Shao H, Dong Y (2018) Effects of low-vacuum helium cold plasma treatment on seed germination, plant growth and yield of oilseed rape. Plasma Sci Technol 20(9):095502. https://doi.org/10.1088/2058-6272/aac3d0

    Article  CAS  Google Scholar 

  46. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7(4):1822–1832. https://doi.org/10.1039/c6ra24762h

    Article  CAS  Google Scholar 

  47. Sarangapani C, Devi RY, Thirumdas R, Trimukhe AM, Deshmukh RR, Annapure US (2017) Physico-chemical properties of low-pressure plasma treated black gram. LWT-Food Science and Technology 79:102–110. https://doi.org/10.1016/j.lwt.2017.01.017

    Article  CAS  Google Scholar 

  48. Yan Y, Feng L, Shi M, Cui C, Liu Y (2020) Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment. Food Chem 306:125589. https://doi.org/10.1016/j.foodchem.2019.125589

    Article  CAS  PubMed  Google Scholar 

  49. Na H, Mok C, Lee J (2020) Effects of plasma treatment on the oxidative stability of vegetable oil containing antioxidants. Food Chem 302:125306. https://doi.org/10.1016/j.foodchem.2019.125306

    Article  CAS  PubMed  Google Scholar 

  50. Yepez XV, Keener KM (2016) High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innov Food Sci Emerg Technol 38:169–174. https://doi.org/10.1016/j.ifset.2016.09.001

    Article  CAS  Google Scholar 

  51. Ekezie FGC, Sun DW, Cheng JH (2019) Altering the IgE binding capacity of king prawn (Litopenaeus Vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chem 300:125143. https://doi.org/10.1016/j.foodchem.2019.125143

    Article  CAS  PubMed  Google Scholar 

  52. Chou YJ, Cheng KC, Hsu FC, Wu JS, Ting Y (2021) Producing high quality mung bean sprout using atmospheric cold plasma treatment: better physical appearance and higher γ-aminobutyric acid (GABA) content. J Sci Food Agric 101(15):6463–6471. https://doi.org/10.1002/jsfa.11317

    Article  CAS  PubMed  Google Scholar 

  53. Thirumdas R, Deshmukh RR, Annapure US (2015) Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innov Food Sci Emerg Technol 31:83–90. https://doi.org/10.1016/j.ifset.2015.08.003

    Article  CAS  Google Scholar 

  54. Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Bourke P, Cullen PJ (2017) Effects of cold plasma on surface, thermal and antimicrobial release properties of chitosan film. J Renew Mater 5(1):14–20. https://doi.org/10.7569/JRM.2016.634105

    Article  CAS  Google Scholar 

  55. Guo J, Huang K, Wang J (2015) Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control 50:482–490. https://doi.org/10.1016/j.foodcont.2014.09.037

    Article  CAS  Google Scholar 

  56. Pankaj SK, Wan Z, Keener KM (2018) Effects of cold plasma on food quality: a review. Foods 7(1):4. https://doi.org/10.3390/foods7010004

    Article  CAS  PubMed Central  Google Scholar 

  57. Misra NN, Keener KM, Bourke P, Mosnier JP, Cullen PJ (2014) In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J Biosci Bioeng 118(2):177–182. https://doi.org/10.1016/j.jbiosc.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  58. Lunov O, Zablotskii V, Churpita O, Jäger A, Polívka L, Syková E, Dejneka A, Kubinová Š (2016) The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 82:71–83. https://doi.org/10.1016/j.biomaterials.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  59. Yong HI, Kim HJ, Park S, Alahakoon AU, Kim K, Choe W, Jo C (2015) Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma. Food Microbiol 46:46–50. https://doi.org/10.1016/j.fm.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  60. Liang Y, Wu Y, Sun K, Chen Q, Shen F, Zhang J, Yao M, Zhu T, Fang J (2012) Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma. Environ Sci Technol 46(6):3360–3368. https://doi.org/10.1021/es203770q

    Article  CAS  PubMed  Google Scholar 

  61. Han L, Boehm D, Amias E, Milosavljević V, Cullen PJ, Bourke P (2016) Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innov Food Sci Emerg Technol 38:384–392. https://doi.org/10.1016/j.ifset.2016.09.026

    Article  CAS  Google Scholar 

  62. Mehta D, Sharma N, Bansal V, Sangwan RS, Yadav SK (2019) Impact of ultrasonication, ultraviolet and atmospheric cold plasma processing on quality parameters of tomato-based beverage in comparison with thermal processing. Innov Food Sci Emerg Technol 52:343–349. https://doi.org/10.1016/j.ifset.2019.01.015

    Article  CAS  Google Scholar 

  63. Cui H, Wu J, Li C, Lin L (2017) Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. J Food Saf 37(2):e12316. https://doi.org/10.1111/jfs.12316

    Article  CAS  Google Scholar 

  64. Trevisani M, Berardinelli A, Cevoli C, Cecchini M, Ragni L, Pasquali F (2017) Effects of sanitizing treatments with atmospheric cold plasma, SDS and lactic acid on verotoxin-producing Escherichia coli and Listeria monocytogenes in red chicory (radicchio). Food Control 78:138–143. https://doi.org/10.1016/j.foodcont.2017.02.056

    Article  CAS  Google Scholar 

  65. Liu CT, Kumakura T, Ishikawa K, Hashizume H, Takeda K, Ito M, Hori M, Wu JS (2016) Effects of assisted magnetic field to an atmospheric-pressure plasma jet on radical generation at the plasma-surface interface and bactericidal function. Plasma Sources Sci Technol 25(6):065005. https://doi.org/10.1088/0963-0252/25/6/065005

    Article  CAS  Google Scholar 

  66. Pankaj SK, Misra NN, Cullen PJ (2013) Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov Food Sci Emerg Technol 19:153–157. https://doi.org/10.1016/j.ifset.2013.03.001

    Article  CAS  Google Scholar 

  67. Liang Y, Jensen RE, Pappas DD, Palmese GR (2011) Toughening vinyl ester networks with polypropylene meso-fibers: interface modification and composite properties. Polymer 52(2):510–518. https://doi.org/10.1016/j.polymer.2010.12.006

    Article  CAS  Google Scholar 

  68. O’Connor N, Milosavljević V, Daniels S (2011) Development of a real time monitor and multivariate method for long term diagnostics of atmospheric pressure dielectric barrier discharges: application to He, He/N2, and He/O2 discharges. Rev Sci Instrum 82(8):083501. https://doi.org/10.1063/1.3624743

    Article  CAS  PubMed  Google Scholar 

  69. Mehta D, Yadav SK (2020) Impact of atmospheric non-thermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: a hurdle technology approach. Food Sci Technol Int 26(1):3–10. https://doi.org/10.1177/1082013219865360

    Article  CAS  PubMed  Google Scholar 

  70. Moutiq R, Misra NN, Mendonca A, Keener K (2020) In-package decontamination of chicken breast using cold plasma technology: microbial, quality and storage studies. Meat Sci 159:107942. https://doi.org/10.1016/j.meatsci.2019.107942

    Article  CAS  PubMed  Google Scholar 

  71. Phan KTK, Phan HT, Boonyawan D, Intipunya P, Brennan CS, Regenstein JM, Phimolsiripol Y (2018) Non-thermal plasma for elimination of pesticide residues in mango. Innov Food Sci Emerg Technol 48:164–171. https://doi.org/10.1016/j.ifset.2018.06.009

    Article  CAS  Google Scholar 

  72. Gong X, Lin Y, Li X, Wu A, Zhang H, Yan J, Du C (2020) Decomposition of volatile organic compounds using gliding arc discharge plasma. J Air Waste Manag Assoc 70(2):138–157. https://doi.org/10.1080/10962247.2019.1698476

    Article  CAS  PubMed  Google Scholar 

  73. Choi S, Puligundla P, Mok C (2017) Effect of corona discharge plasma on microbial decontamination of dried squid shreds including physico-chemical and sensory evaluation. LWT 75:323–328. https://doi.org/10.1016/j.lwt.2016.08.063

    Article  CAS  Google Scholar 

  74. Hou Y, Wang R, Gan Z, Shao T, Zhang X, He M, Sun A (2019) Effect of cold plasma on blueberry juice quality. Food Chem 290:79–86. https://doi.org/10.1016/j.foodchem.2019.03.123

    Article  CAS  PubMed  Google Scholar 

  75. Bauer S, Schmuki P, Von Der Mark K, Park J (2013) Engineering biocompatible implant surfaces: Part I: materials and surfaces. Prog Mater Sci 58(3):261–326. https://doi.org/10.1016/j.pmatsci.2012.09.001

    Article  CAS  Google Scholar 

  76. Wong LW, Hou CY, Hsieh CC, Chang CK, Wu YS, Hsieh CW (2020) Preparation of antimicrobial active packaging film by capacitively coupled plasma treatment. LWT 117:108612. https://doi.org/10.1016/j.lwt.2019.108612

    Article  CAS  Google Scholar 

  77. Ryan K, O’Farrell D, Ellingboe AR (2011) Spatial structure of plasma potential oscillation and ion saturation current in VHF multi-tile electrode plasma source. Curr Appl Phys 11(5):S114–S116. https://doi.org/10.1016/j.cap.2011.05.003

    Article  Google Scholar 

  78. Milosavljević V, Faulkner R, Hopkins MB (2007) Real time sensor for monitoring oxygen in radio–frequency plasma applications. Opt Express 15(21):13913–13923. https://doi.org/10.1364/OE.15.013913

    Article  PubMed  Google Scholar 

  79. Kim JE, Oh YJ, Song AY, Min SC (2019) Preservation of red pepper flakes using microwave-combined cold plasma treatment. J Sci Food Agric 99(4):1577–1585. https://doi.org/10.1002/jsfa.9336

    Article  CAS  PubMed  Google Scholar 

  80. Milosavljević V, MacGearailt N, Cullen PJ, Daniels S, Turner MM (2013) Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher. J Appl Phys 113(16):163302. https://doi.org/10.1063/1.4802440

    Article  CAS  Google Scholar 

  81. Oh YA, Roh SH, Min SC (2016) Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids 58:150–159. https://doi.org/10.1016/j.foodhyd.2016.02.022

    Article  CAS  Google Scholar 

  82. Song AY, Oh YA, Roh SH, Kim JH, Min SC (2016) Cold oxygen plasma treatments for the improvement of the physicochemical and biodegradable properties of polylactic acid films for food packaging. J Food Sci 81(1):E86–E96. https://doi.org/10.1111/1750-3841.13172

    Article  CAS  PubMed  Google Scholar 

  83. Laroussi M (2020) Cold plasma in medicine and healthcare: the new frontier in low temperature plasma applications. Front Phys 8:74. https://doi.org/10.3389/fphy.2020.00074

    Article  Google Scholar 

  84. Szili EJ, Short RD, Steele DA, Bradley JW (2021) Surface modification of biomaterials by plasma polymerization. In: Williams R (ed) Woodhead Publishing Series in Biomaterials, surface modification of biomaterials. Woodhead Publishing, pp 3–39. https://doi.org/10.1533/9780857090768.1.3

    Chapter  Google Scholar 

  85. Tabares FL, Junkar I (2021) Cold plasma systems and their application in surface treatments for medicine. Molecules 26:1903. https://doi.org/10.3390/molecules26071903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Paixão LM, Fonteles TV, Oliveira VS, Fernandes FA, Rodrigues S (2019) Cold plasma effects on functional compounds of siriguela juice. Food Bioprocess Technol 12(1):110–121. https://doi.org/10.1007/s11947-018-2197-z

    Article  CAS  Google Scholar 

  87. Garofulić IE, Jambrak AR, Milošević S, Dragović-Uzelac V, Zorić Z, Herceg Z (2015) The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var. Marasca) juice. LWT Food Sci Technol 62(1):894–900. https://doi.org/10.1016/j.lwt.2014.08.036

    Article  CAS  Google Scholar 

  88. Berardinelli A, Pasquali F, Cevoli C, Trevisani M, Ragni L, Mancusi R, Manfreda G (2016) Sanitisation of fresh-cut celery and radicchio by gas plasma treatments in water medium. Postharvest Biol Technol 111:297–304. https://doi.org/10.1016/j.postharvbio.2015.09.026

    Article  CAS  Google Scholar 

  89. Choi EJ, Yang HS, Park HW, Chun HH (2018) Inactivation of Escherichia coli O157: H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. LWT 93:477–484. https://doi.org/10.1016/j.lwt.2018.03.081

    Article  CAS  Google Scholar 

  90. Pelletier J (1992) La stérilisation par le procédé plasma. Agressologie (Paris) 33:105–110

    Google Scholar 

  91. Charoux CM, Free L, Hinds LM, Vijayaraghavan RK, Daniels S, O’Donnell CP, Tiwari BK (2020) Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains. LWT 118:108716. https://doi.org/10.1016/j.lwt.2019.108716

    Article  CAS  Google Scholar 

  92. McClurkin-Moore JD, Ileleji KE, Keener KM (2017) The effect of high-voltage atmospheric cold plasma treatment on the shelf-life of distiller’s wet grains. Food Bioprocess Technol 10(8):1431–1440. https://doi.org/10.1007/s11947-017-1903-6

    Article  CAS  Google Scholar 

  93. Wang J, Zhuang H, Zhang J (2016) Inactivation of spoilage bacteria in package by dielectric barrier discharge atmospheric cold plasma–treatment time effects. Food Bioprocess Technol 9(10):1648–1652. https://doi.org/10.1007/s11947-016-1746-6

    Article  CAS  Google Scholar 

  94. Xu L, Garner AL, Tao B, Keener KM (2017) Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food Bioprocess Technol 10(10):1778–1791. https://doi.org/10.1007/s11947-017-1947-7

    Article  CAS  Google Scholar 

  95. Kim JE, Oh YJ, Won MY, Lee KS, Min SC (2017) Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiol 62:112–123. https://doi.org/10.1016/j.fm.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  96. Wan Z, Chen Y, Pankaj SK, Keener KM (2017) High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella Enteritidis contamination on egg shell. LWT Food Sci Technol 76:124–130. https://doi.org/10.1016/j.lwt.2016.10.051

    Article  CAS  Google Scholar 

  97. Song AY, Oh YJ, Kim JE, Song KB, Oh DH, Min SC (2015) Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Sci Biotechnol 24(5):1717–1724. https://doi.org/10.1007/s10068-015-0223-8

    Article  CAS  Google Scholar 

  98. Oh YJ, Song AY, Min SC (2017) Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. Int J Food Microbiol 249:66–71. https://doi.org/10.1016/j.ijfoodmicro.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  99. Zhou D, Wang Z, Tu S, Chen S, Peng J, Tu K (2019) Effects of cold plasma, UV-C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. J Appl Microbiol 127(1):175–185. https://doi.org/10.1111/jam.14280

    Article  CAS  PubMed  Google Scholar 

  100. Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116. https://doi.org/10.1016/j.fm.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  101. Misra NN, Yepez X, Xu L, Keener K (2019) In-package cold plasma technologies. J Food Eng 244:21–31. https://doi.org/10.1016/j.jfoodeng.2018.09.019

    Article  CAS  Google Scholar 

  102. Zhuang H, Rothrock MJ Jr, Hiett KL, Lawrence KC, Gamble GR, Bowker BC, Keener KM (2019) In-package air cold plasma treatment of chicken breast meat: treatment time effect. J Food Qual 2019:1837351. https://doi.org/10.1155/2019/1837351

    Article  CAS  Google Scholar 

  103. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) Long-term antibacterial efficacy of air plasma-activated water. J Phys D Appl Phys 44(47):472001. https://doi.org/10.1088/0022-3727/44/47/472001

    Article  CAS  Google Scholar 

  104. Xiang Q, Kang C, Niu L, Zhao D, Li K, Bai Y (2018) Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2. LWT 96:395–401. https://doi.org/10.1016/j.lwt.2018.05.059

    Article  CAS  Google Scholar 

  105. Sun P, Wu H, Bai N, Zhou H, Wang R, Feng H, Zhu W, Zhang J, Fang J (2012) Inactivation of Bacillus subtilis spores in water by a direct-current, cold atmospheric-pressure air plasma microjet. Plasma Processes Polym 9(2):157–164. https://doi.org/10.1002/ppap.201100041

    Article  CAS  Google Scholar 

  106. Wang Q, Salvi D (2021) Recent progress in the application of plasma-activated water (PAW) for food decontamination. Curr Opin Food Sci 42:51–60. https://doi.org/10.1016/j.cofs.2021.04.012

    Article  CAS  Google Scholar 

  107. Takai E, Kitano K, Kuwabara J, Shiraki K (2012) Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Processes Polym 9(1):77–82. https://doi.org/10.1002/ppap.201100063

    Article  CAS  Google Scholar 

  108. Dong S, Gao A, Xu H, Chen Y (2017) Effects of dielectric barrier discharges (DBD) cold plasma treatment on physicochemical and structural properties of zein powders. Food Bioprocess Technol 10(3):434–444. https://doi.org/10.1007/s11947-016-1814-y

    Article  CAS  Google Scholar 

  109. Castro DRG, Mar JM, da Silva LS, da Silva KA, Sanches EA, de Araújo Bezerra J, Rodrigues S, Fernandes FAN, Campelo PH (2020) Improvement of the bioavailability of amazonian juices rich in bioactive compounds using glow plasma technique. Food Bioprocess Technol 13:670–679. https://doi.org/10.1007/s11947-020-02427-8

    Article  CAS  Google Scholar 

  110. de Castro DRG, Mar JM, da Silva LS, da Silva KA, Sanches EA, de Araújo Bezerra J, Rodrigues S, Fernandes FAN, Campelo PH (2020) Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: effect of the excitation frequency. Food Res Int 131:109044. https://doi.org/10.1016/j.foodres.2020.109044

    Article  CAS  PubMed  Google Scholar 

  111. Segat A, Misra NN, Cullen PJ, Innocente N (2016) Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod Process 98:181–188. https://doi.org/10.1016/j.fbp.2016.01.010

    Article  CAS  Google Scholar 

  112. Xu Y, Tian Y, Ma R, Liu Q, Zhang J (2016) Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem 197:436–444. https://doi.org/10.1016/j.foodchem.2015.10.144

    Article  CAS  PubMed  Google Scholar 

  113. Almeida FDL, Cavalcante RS, Cullen PJ, Frias JM, Bourke P, Fernandes FA, Rodrigues S (2015) Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innov Food Sci Emerg Technol 32:127–135. https://doi.org/10.1016/j.ifset.2015.09.001

    Article  CAS  Google Scholar 

  114. Pankaj SK, Wan Z, Colonna W, Keener KM (2017) Effect of high voltage atmospheric cold plasma on white grape juice quality. J Sci Food Agric 97(12):4016–4021. https://doi.org/10.1002/jsfa.8268

    Article  CAS  PubMed  Google Scholar 

  115. Rana S, Mehta D, Bansal V, Shivhare US, Yadav SK (2020) Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. J Food Sci Technol 57(1):102–112. https://doi.org/10.1007/s13197-019-04035-7

    Article  CAS  PubMed  Google Scholar 

  116. Rodríguez Ó, Gomes WF, Rodrigues S, Fernandes FA (2017) Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT 84:457–463. https://doi.org/10.1016/j.lwt.2017.06.010

    Article  CAS  Google Scholar 

  117. Sarangapani C, O’Toole G, Cullen PJ, Bourke P (2017) Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innov Food Sci Emerg Technol 44:235–241. https://doi.org/10.1016/j.ifset.2017.02.012

    Article  CAS  Google Scholar 

  118. Misra NN, Moiseev T, Patil S, Pankaj SK, Bourke P, Mosnier JP, Keener KM, Cullen PJ (2014) Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technol 7(10):3045–3054. https://doi.org/10.1007/s11947-014-1356-0

    Article  CAS  Google Scholar 

  119. Sawangrat C, Leksakul K, Bonyawan D, Anantana T, Jomjunyong S (2019) Decontamination of pesticide residues on tangerine fruit using non-thermal plasma technology. IOP Conf Ser Earth Environ Sci 347(1):012048

    Article  Google Scholar 

  120. Zhou R, Zhou R, Yu F, Xi D, Wang P, Li J, Wang X, Zhang X, Bazaka K, Ostrikov KK (2018) Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chem Eng J 342:401–409. https://doi.org/10.1016/j.cej.2018.02.107

    Article  CAS  Google Scholar 

  121. Elhussein EAA, Şahin S, Bayazit ŞS (2018) Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. J Mol Liq 255:10–17. https://doi.org/10.1016/j.molliq.2018.01.165

    Article  CAS  Google Scholar 

  122. Jawale RH, Gogate PR (2018) Combined treatment approaches based on ultrasound for removal of triazophos from wastewater. Ultrason Sonochem 40:89–96. https://doi.org/10.1016/j.ultsonch.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  123. Patil PN, Gogate PR (2016) Combined treatment processes based on ultrasound and photocatalysis for treatment of pesticide containing wastewater. Handbook of Ultrasonics and Sonochemistry. Springer, pp 901–929

    Chapter  Google Scholar 

  124. Plattner J, Kazner C, Naidu G, Wintgens T, Vigneswaran S (2018) Removal of selected pesticides from groundwater by membrane distillation. Environ Sci Pollut Res 25(21):20336–20347. https://doi.org/10.1007/s11356-017-8929-1

    Article  CAS  Google Scholar 

  125. Saini R, Kumar Mondal M, Kumar P (2017) Fenton oxidation of pesticide methyl parathion in aqueous solution: kinetic study of the degradation. Environ Prog Sustainable Energy 36(2):420–427. https://doi.org/10.1002/ep.12473

    Article  CAS  Google Scholar 

  126. Zheng Y, Wu S, Dang J, Wang S, Liu Z, Fang J, Han P, Zhang J (2019) Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. J Hazard Mater 377:98–105. https://doi.org/10.1016/j.jhazmat.2019.05.058

    Article  CAS  PubMed  Google Scholar 

  127. Feng X, Ma X, Liu H, Xie J, He C, Fan R (2019) Argon plasma effects on maize: pesticide degradation and quality changes. J Sci Food Agric 99(12):5491–5498. https://doi.org/10.1002/jsfa.9810

    Article  CAS  PubMed  Google Scholar 

  128. Ranjitha Gracy TK, Gupta V, Mahendran R (2019) Influence of low-pressure nonthermal dielectric barrier discharge plasma on chlorpyrifos reduction in tomatoes. J Food Process Eng 42(6):e13242. https://doi.org/10.1111/jfpe.13242

    Article  Google Scholar 

  129. Mousavi SM, Imani S, Dorranian D, Larijani K, Shojaee M (2017) Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products. J Plant Prot Res 57(1):25–35. https://doi.org/10.1515/jppr-2017-0004

    Article  CAS  Google Scholar 

  130. Heo NS, Lee MK, Kim GW, Lee SJ, Park JY, Park TJ (2014) Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments. J Biosci Bioeng 117(1):81–85. https://doi.org/10.1016/j.jbiosc.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  131. Gao L, Sun L, Wan S, Yu Z, Li M (2013) Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: the case of 17β-Estradiol. Chem Eng J 228:790–798. https://doi.org/10.1016/j.cej.2013.05.079

    Article  CAS  Google Scholar 

  132. Reddy PMK, Mahammadunnisa S, Subrahmanyam C (2014) Catalytic non-thermal plasma reactor for mineralization of endosulfan in aqueous medium: a green approach for the treatment of pesticide contaminated water. Chem Eng J 238:157–163. https://doi.org/10.1016/j.cej.2013.08.087

    Article  CAS  Google Scholar 

  133. Tolouie H, Mohammadifar MA, Ghomi H, Hashemi M (2017) Cold atmospheric plasma manipulation of proteins in food systems. Crit Rev Food Sci Nutr 58(15):2583–2597. https://doi.org/10.1080/10408398.2017.1335689

    Article  CAS  PubMed  Google Scholar 

  134. Wu Y, Liang Y, Wei K, Li W, Yao M, Zhang J (2014) Rapid allergen inactivation using atmospheric pressure cold plasma. Environ Sci Technol 48(5):2901–2909. https://doi.org/10.1021/es5003988

    Article  CAS  PubMed  Google Scholar 

  135. Surowsky B, Fischer A, Schlueter O, Knorr D (2013) Cold plasma effects on enzyme activity in a model food system. Innov Food Sci Emerg Technol 19:146–152. https://doi.org/10.1016/j.ifset.2013.04.002

    Article  CAS  Google Scholar 

  136. Meinlschmidt P, Ueberham E, Lehmann J, Reineke K, Schlüter O, Schweiggert-Weisz U, Eisner P (2016) The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innov Food Sci Emerg Technol 38:374–383. https://doi.org/10.1016/j.ifset.2016.06.007

    Article  CAS  Google Scholar 

  137. Li J, Xiang Q, Liu X, Ding T, Zhang X, Zhai Y, Bai Y (2017) Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma. Food Chem 232:515–522. https://doi.org/10.1016/j.foodchem.2017.03.167

    Article  CAS  PubMed  Google Scholar 

  138. Alves Filho EG, Silva LMA, Oiram Filho F, Rodrigues S, Fernandes FA, Gallão MI, Mattison CP, de Brito ES (2019) Cold plasma processing effect on cashew nuts composition and allergenicity. Food Res Int 125:108621. https://doi.org/10.1016/j.foodres.2019.108621

    Article  CAS  PubMed  Google Scholar 

  139. Venkataratnam H, Sarangapani C, Cahill O, Ryan CB (2019) Effect of cold plasma treatment on the antigenicity of peanut allergen Ara h 1. Innov Food Sci Emerg Technol 52:368–375. https://doi.org/10.1016/j.ifset.2019.02.001

    Article  CAS  Google Scholar 

  140. Bußler S, Steins V, Ehlbeck J, Schlüter O (2015) Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum ‘Salamanca.’ J Food Eng 167:166–174. https://doi.org/10.1016/j.jfoodeng.2015.05.036

    Article  CAS  Google Scholar 

  141. Tammineedi CV, Choudhary R, Perez-Alvarado GC, Watson DG (2013) Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT Food Sci Technol 54(1):35–41. https://doi.org/10.1016/j.lwt.2013.05.020

    Article  CAS  Google Scholar 

  142. Pan Y, Cheng JH, Sun DW (2019) Cold plasma-mediated treatments for shelf life extension of fresh produce: a review of recent research developments. Compr Rev Food Sci Food Saf 18(5):1312–1326. https://doi.org/10.1111/1541-4337.12474

    Article  PubMed  Google Scholar 

  143. Pankaj SK, Thomas S (2016) Cold plasma applications in food packaging. Cold Plasma in Food and Agriculture. Academic Press, pp 293–307. https://doi.org/10.1016/B978-0-12-801365-6.00012-3

    Chapter  Google Scholar 

  144. Moosavi MH, Khani MR, Shokri B, Hosseini SM, Shojaee-Aliabadi S, Mirmoghtadaie L (2020) Modifications of protein-based films using cold plasma. Int J Biol Macromol 142:769–777. https://doi.org/10.1016/j.ijbiomac.2019.10.017

    Article  CAS  PubMed  Google Scholar 

  145. Li Y, Bai Y, Huang J, Yuan C, Ding T, Liu D, Hu Y (2020) Airglow discharge plasma treatment affects the surface structure and physical properties of zein films. J Food Eng 273:109813. https://doi.org/10.1016/j.jfoodeng.2019.109813

    Article  CAS  Google Scholar 

  146. Romani VP, Olsen B, Collares MP, Oliveira JRM, Prentice-Hernández C, Martins VG (2019) Improvement of fish protein films properties for food packaging through glow discharge plasma application. Food Hydrocolloids 87:970–976. https://doi.org/10.1016/j.foodhyd.2018.09.022

    Article  CAS  Google Scholar 

  147. Romani VP, Olsen B, Collares MP, Oliveira JRM, Prentice C, Martins VG (2019) Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. Food Hydrocolloids 94:210–216. https://doi.org/10.1016/j.foodhyd.2019.03.021

    Article  CAS  Google Scholar 

  148. Tenn N, Follain N, Fatyeyeva K, Poncin-Epaillard F, Labrugère C, Marais S (2014) Impact of hydrophobic plasma treatments on the barrier properties of poly (lactic acid) films. RSC Adv 4(11):5626–5637. https://doi.org/10.1039/c3ra45323e

    Article  CAS  Google Scholar 

  149. Paisoonsin S, Pornsunthorntawee O, Rujiravanit R (2013) Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Appl Surf Sci 273:824–835. https://doi.org/10.1016/j.apsusc.2013.03.026

    Article  CAS  Google Scholar 

  150. Thirumdas R, Kadam D, Annapure US (2017) Cold plasma: an alternative technology for the starch modification. Food Biophys 12(1):129–139. https://doi.org/10.1007/s11483-017-9468-5

    Article  Google Scholar 

  151. Wu TY, Sun NN, Chau CF (2018) Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. J Food Drug Anal 26(1):244–251. https://doi.org/10.1016/j.jfda.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  152. Banura S, Thirumdas R, Kaur A, Deshmukh RR, Annapure US (2018) Modification of starch using low pressure radio frequency air plasma. LWT 89:719–724. https://doi.org/10.1016/j.lwt.2017.11.056

    Article  CAS  Google Scholar 

  153. Wu TY, Chang CR, Chang TJ, Chang YJ, Liew Y, Chau CF (2019) Changes in physicochemical properties of corn starch upon modifications by atmospheric pressure plasma jet. Food Chem 283:46–51. https://doi.org/10.1016/j.foodchem.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  154. Thirumdas R, Saragapani C, Ajinkya MT, Deshmukh RR, Annapure US (2016) Influence of low-pressure cold plasma on cooking and textural properties of brown rice. Innov Food Sci Emerg Technol 37:53–60. https://doi.org/10.1016/j.ifset.2016.08.009

    Article  CAS  Google Scholar 

  155. Thirumdas R, Trimukhe A, Deshmukh RR, Annapure US (2017) Functional and rheological properties of cold plasma treated rice starch. Carbohyd Polym 157:1723–1731. https://doi.org/10.1016/j.carbpol.2016.11.050

    Article  CAS  Google Scholar 

  156. Kim HJ, Yong HI, Park S, Kim K, Choe W, Jo C (2015) Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control 47:451–456. https://doi.org/10.1016/j.foodcont.2014.07.053

    Article  CAS  Google Scholar 

  157. Vandamme J, Nikiforov A, Dujardin K, Leys C, De Cooman L, Van Durme J (2015) Critical evaluation of non-thermal plasma as an innovative accelerated lipid oxidation technique in fish oil. Food Res Int 72:115–125. https://doi.org/10.1016/j.foodres.2015.03.037

    Article  CAS  Google Scholar 

  158. Kulawik P, Alvarez C, Cullen PJ, Aznar-Roca R, Mullen AM, Tiwari B (2018) The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi. Innov Food Sci Emerg Technol 45:412–417. https://doi.org/10.1016/j.ifset.2017.12.011

    Article  CAS  Google Scholar 

  159. Albertos I, Martín-Diana A, Cullen PJ, Tiwari BK, Ojha SK, Bourke P, Álvarez C, Rico D (2017) Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innov Food Sci Emerg Technol 44:117–122. https://doi.org/10.1016/j.ifset.2017.07.006

    Article  CAS  Google Scholar 

  160. Sarangapani C, Keogh DR, Dunne J, Bourke P, Cullen PJ (2017) Characterization of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chem 235:324–333. https://doi.org/10.1016/j.foodchem.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  161. Hosseini SM, Rostami S, Hosseinzadeh Samani B, Lorigooini Z (2020) The effect of atmospheric pressure cold plasma on the inactivation of Escherichia coli in sour cherry juice and its qualitative properties. Food Sci Nutr 8(2):870–883. https://doi.org/10.1002/fsn3.1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fernandes FA, Santos VO, Rodrigues S (2019) Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Res Int 115:16–22. https://doi.org/10.1016/j.foodres.2018.07.042

    Article  CAS  PubMed  Google Scholar 

  163. Singh R, Prasad P, Mohan R, Verma MK, Kumar B (2019) Radiofrequency cold plasma treatment enhances seed germination and seedling growth in variety CIM-Saumya of sweet basil (Ocimum basilicum L.). J Appl Res Med Aromat Plants 12:78–81. https://doi.org/10.1016/j.jarmap.2018.11.005

    Article  Google Scholar 

  164. Dawood N (2020) Effect of RF plasma on Moringa seeds germination and growth. J Taibah Univ Sci 14(1):279–284. https://doi.org/10.1080/16583655.2020.1713570

    Article  Google Scholar 

  165. Billah M, Sajib SA, Roy NC, Rashid MM, Reza MA, Hasan MM, Talukder MR (2020) Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo l.) seed germination and growth. Arch Biochem Biophys 681:108253. https://doi.org/10.1016/j.abb.2020.108253

    Article  CAS  PubMed  Google Scholar 

  166. Sajib SA, Billah M, Mahmud S, Miah M, Hossain F, Omar FB, Roy NP, Hoque KMF, Talukdar MR, Kabir AH, Reza MA (2020) Plasma activated water: the next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem Plasma Process 40(1):119–143. https://doi.org/10.1007/s11090-019-10028-3

    Article  CAS  Google Scholar 

  167. Boutraa T, Fadhlalmawla SA, Almarashi JQ, Mohamed AAH (2019) Argon cold atmospheric pressure plasma jet enhancing seed germination of Fenugreek (Trigonella Foenum-Graecum). 2019 IEEE Pulsed Power and Plasma Science (PPPS). IEEE, pp 1–5. https://doi.org/10.1109/ppps34859.2019.9009694

  168. Iqbal T, Farooq M, Afsheen S, Abrar M, Yousaf M, Ijaz M (2019) Cold plasma treatment and laser irradiation of Triticum spp. seeds for sterilization and germination. J Laser Appl 31(4):042013. https://doi.org/10.2351/1.5109764

    Article  CAS  Google Scholar 

  169. Sadhu S, Thirumdas R, Deshmukh RR, Annapure US (2017) Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT 78:97–104. https://doi.org/10.1016/j.lwt.2016.12.026

    Article  CAS  Google Scholar 

  170. Zhang JJ, Jo JO, Mongre RK, Ghosh M, Singh AK, Lee SB, Mok YS, Hyuk P, Jeong DK (2017) Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Sci Rep 7:41917. https://doi.org/10.1038/srep41917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Baldanov BB, Ranzhurov TV, Sordonova MN, Budazhapov LV (2020) Changes in the properties and surface structure of grain seeds under the influence of a glow discharge at atmospheric pressure. Plasma Phys Rep 46(1):110–114. https://doi.org/10.1134/S1063780X2001002X

    Article  Google Scholar 

  172. Liao X, Li J, Muhammad AI, Suo Y, Chen S, Ye X, Liu D, Ding T (2018) Application of a dielectric barrier discharge atmospheric cold plasma (Dbd-Acp) for Eshcerichia coli inactivation in apple juice. J Food Sci 83(2):401–408. https://doi.org/10.1111/1750-3841.14045

    Article  CAS  PubMed  Google Scholar 

  173. Xiang Q, Liu X, Li J, Liu S, Zhang H, Bai Y (2018) Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chem 254:201–207. https://doi.org/10.1016/j.foodchem.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  174. Won MY, Lee SJ, Min SC (2017) Mandarin preservation by microwave-powered cold plasma treatment. Innov Food Sci Emerg Technol 39:25–32. https://doi.org/10.1016/j.ifset.2016.10.021

    Article  CAS  Google Scholar 

  175. Patange A, Boehm D, Bueno-Ferrer C, Cullen PJ, Bourke P (2017) Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiol 66:48–54. https://doi.org/10.1016/j.fm.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  176. Moritz M, Wiacek C, Koethe M, Braun PG (2017) Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells. Int J Food Microbiol 245:22–28. https://doi.org/10.1016/j.ijfoodmicro.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  177. Min SC, Roh SH, Niemira BA, Boyd G, Sites JE, Uknalis J, Fan X (2017) In-package inhibition of E. coli O157: H7 on bulk Romaine lettuce using cold plasma. Food Microbiol 65:1–6. https://doi.org/10.1016/j.fm.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  178. Devi Y, Thirumdas R, Sarangapani C, Deshmukh RR, Annapure US (2017) Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 77:187–191. https://doi.org/10.1016/j.foodcont.2017.02.019

    Article  CAS  Google Scholar 

  179. Dasan BG, Mutlu M, Boyaci IH (2016) Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor. Int J Food Microbiol 216:50–59. https://doi.org/10.1016/j.ijfoodmicro.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  180. Chutia H, Kalita D, Mahanta CL, Ojah N, Choudhury AJ (2019) Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma. LWT 101:625–629. https://doi.org/10.1016/j.lwt.2018.11.071

    Article  CAS  Google Scholar 

  181. Tappi S, Berardinelli A, Ragni L, Dalla Rosa M, Guarnieri A, Rocculi P (2014) Atmospheric gas plasma treatment of fresh-cut apples. Innov Food Sci Emerg Technol 21:114–122. https://doi.org/10.1016/j.ifset.2013.09.012

    Article  CAS  Google Scholar 

  182. Khani MR, Shokri B, Khajeh K (2017) Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation. J Food Eng 197:107–112. https://doi.org/10.1016/j.jfoodeng.2016.11.012

    Article  CAS  Google Scholar 

  183. Chen HH, Hung CL, Lin SY, Liou GJ (2015) Effect of low-pressure plasma exposure on the storage characteristics of brown rice. Food Bioprocess Technol 8(2):471–477. https://doi.org/10.1007/s11947-014-1415-6

    Article  CAS  Google Scholar 

  184. Illera AE, Chaple S, Sanz MT, Ng S, Lu P, Jones J, Carey E, Bourke P (2019) Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chem X 3:100049. https://doi.org/10.1016/j.fochx.2019.100049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Amanpour A, Vandamme J, Polat S, Kelebek H, Van Durme J, Selli S (2019) Non-thermal plasma effects on the lipoxygenase enzyme activity, aroma and phenolic profiles of olive oil. Innov Food Sci Emerg Technol 54:123–131. https://doi.org/10.1016/j.ifset.2019.04.004

    Article  CAS  Google Scholar 

  186. Tappi S, Ramazzina I, Rizzi F, Sacchetti G, Ragni L, Rocculi P (2018) Effect of plasma exposure time on the polyphenolic profile and antioxidant activity of fresh-cut apples. Appl Sci 8(10):1939. https://doi.org/10.3390/app8101939

    Article  CAS  Google Scholar 

  187. Dasan BG, Boyaci IH (2018) Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food Bioprocess Technol 11(2):334–343. https://doi.org/10.1007/s11947-017-2014-0

    Article  CAS  Google Scholar 

  188. Kovačević DB, Kljusurić JG, Putnik P, Vukušić T, Herceg Z, Dragović-Uzelac V (2016) Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chem 212:323–331. https://doi.org/10.1016/j.foodchem.2016.05.192

    Article  CAS  Google Scholar 

  189. Shi H, Cooper B, Stroshine RL, Ileleji KE, Keener KM (2017) Structures of degradation products and degradation pathways of aflatoxin B1 by high-voltage atmospheric cold plasma (HVACP) treatment. J Agric Food Chem 65(30):6222–6230. https://doi.org/10.1021/acs.jafc.7b01604

    Article  CAS  PubMed  Google Scholar 

  190. Heidemann HM, Dotto ME, Laurindo JB, Carciofi BA, Costa C (2019) Cold plasma treatment to improve the adhesion of cassava starch films onto PCL and PLA surface. Colloids Surf A 580:123739. https://doi.org/10.1016/j.colsurfa.2019.123739

    Article  CAS  Google Scholar 

  191. Dong S, Guo P, Chen GY, Jin N, Chen Y (2020) Study on the atmospheric cold plasma (ACP) treatment of zein film: surface properties and cytocompatibility. Int J Biol Macromol 153:1319–1327. https://doi.org/10.1016/j.ijbiomac.2019.10.268

    Article  CAS  PubMed  Google Scholar 

  192. Paneru R, Lamichhane P, Adhikari CB, Ki SH, Choi J, Kwon JS, Choi EH (2019) Surface modification of PVA thin film by nonthermal atmospheric pressure plasma for antifogging property. AIP Adv 9(7):075008. https://doi.org/10.1063/1.5100776

    Article  CAS  Google Scholar 

  193. Dong S, Guo P, Chen Y, Chen GY, Ji H, Ran Y, Li S, Chen Y (2018) Surface modification via atmospheric cold plasma (ACP): improved functional properties and characterization of zein film. Ind Crops Prod 115:124–133. https://doi.org/10.1016/j.indcrop.2018.01.080

    Article  CAS  Google Scholar 

  194. Honarvar Z, Farhoodi M, Khani MR, Mohammadi A, Shokri B, Ferdowsi R, Shojaee-Aliabadi S (2017) Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. Carbohyd Polym 176:1–10. https://doi.org/10.1016/j.carbpol.2017.08.054

    Article  CAS  Google Scholar 

  195. Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Tiwari BK, Bourke P, Cullen PJ (2015) Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. LWT Food Sci Technol 63(2):1076–1082. https://doi.org/10.1016/j.lwt.2015.04.027

    Article  CAS  Google Scholar 

  196. Kostov KG, Nishime TMC, Castro AHR, Toth A, Hein LRDO (2014) Surface modification of polymeric materials by cold atmospheric plasma jet. Appl Surf Sci 314:367–375. https://doi.org/10.1016/j.apsusc.2014.07.009

    Article  CAS  Google Scholar 

  197. Ulbin-Figlewicz N, Brychcy E, Jarmoluk A (2015) Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J Food Sci Technol 52(2):1228–1232. https://doi.org/10.1007/s13197-013-1108-6

    Article  PubMed  Google Scholar 

  198. Choi S, Puligundla P, Mok C (2016) Corona discharge plasma jet for inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Ann Microbiol 66(2):685–694. https://doi.org/10.1007/s13213-015-1147-5

    Article  CAS  Google Scholar 

  199. Thirumdas R, Deshmukh RR, Annapure US (2016) Effect of low temperature plasma on the functional properties of basmati rice flour. J Food Sci Technol 53(6):2742–2751. https://doi.org/10.1007/s13197-016-2246-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lee KH, Kim HJ, Woo KS, Jo C, Kim JK, Kim SH, Park HY, Oh SK, Kim WH (2016) Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT 73:442–447. https://doi.org/10.1016/j.lwt.2016.06.055

    Article  CAS  Google Scholar 

  201. Sarangapani C, Devi Y, Thirundas R, Annapure US, Deshmukh RR (2015) Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT Food Sci Technol 63(1):452–460. https://doi.org/10.1016/j.lwt.2015.03.026

    Article  CAS  Google Scholar 

  202. Thirumdas R, Sarangapani C, Annapure US (2015) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10(1):1–11. https://doi.org/10.1007/s11483-014-9382-z

    Article  Google Scholar 

  203. Porto CL, Sergio L, Boari F, Logrieco AF, Cantore V (2019) Cold plasma pretreatment improves the germination of wild asparagus (Asparagus acutifolius L.) seeds. Sci Hortic 256:108554. https://doi.org/10.1016/j.scienta.2019.108554

    Article  Google Scholar 

  204. Kumar R, Thakur AK, Vikram A, Vaid A, Rane R (2019) Effect of cold plasma treatment of seeds on quality of seed crop of okra. Int J Econ Plants 6(2):73–77

    Article  Google Scholar 

  205. Yodpitak S, Mahatheeranont S, Boonyawan D, Sookwong P, Roytrakul S, Norkaew O (2019) Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem 289:328–339. https://doi.org/10.1016/j.foodchem.2019.03.061

    Article  CAS  PubMed  Google Scholar 

  206. Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P (2019) Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: effects on seed surface chemistry and characteristics. Plasma Processes Polym 16(4):1800148. https://doi.org/10.1002/ppap.201800148

    Article  CAS  Google Scholar 

  207. de Groot GJ, Hundt A, Murphy AB, Bange MP, Mai-Prochnow A (2018) Cold plasma treatment for cotton seed germination improvement. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-32692-9

    Article  CAS  Google Scholar 

  208. Ling LI, Jiangang LI, Minchong SHEN, Jinfeng H, Hanliang S, Yuanhua D, Jiafeng J (2016) Improving seed germination and peanut yields by cold plasma treatment. Plasma Sci Technol 18(10):1027. https://doi.org/10.1088/1009-0630/18/10/10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the CEO, CIAB, for his continuous support and encouragement.

Funding

This study is financially supported by the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

DM and SKY conceived the idea. DM collected the literature and prepared the draft. SKY edited the article.

Corresponding author

Correspondence to Sudesh Kumar Yadav.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cold plasma exhibits antimicrobial effect and enzyme denaturation property.

• Cold plasma ensures food quality, better food safety, and food packaging.

• Cold plasma is an eco-friendly solution for food and agriculture industry.

• Cold plasma-treated food retains texture, nutritional, and sensory characteristics.

• Future scope of cold plasma technology in food sector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, D., Yadav, S.K. Recent Advances in Cold Plasma Technology for Food Processing. Food Eng Rev 14, 555–578 (2022). https://doi.org/10.1007/s12393-022-09317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09317-z

Keywords

Navigation