Skip to main content
Log in

Research Progress in Simultaneous Heat and Mass Transfer of Fruits and Vegetables During Precooling

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The weight loss and spoilage of post-harvest fruits and vegetables (FVS) occur as a result of physiological and biological processes, the rates of which are influenced primarily by product temperature. In order to maintain the freshness of FVS and reduce losses, it is necessary to cool the product as soon as possible after harvest. Precooling is considered such an effective technique because it quickly removes field heat from FVS, thereby preventing deterioration and senescence. With the increasing demand for fresh FVS, the optimization of precooling technology has received extensive attention, especially the research on its basic principle, that is, the heat and mass transfer (HMT) between FVS and the precooling environment. Therefore, this paper reviews the advantages and disadvantages of several main precooling techniques, their HMT processes, the research methods and detection techniques of HMT, and the simulation and application based on numerical technology. Precooling techniques include room cooling, forced-air cooling, hydrocooling, and vacuum cooling. These advanced detection techniques for HMT include magnetic resonance imaging, particle image velocimetry, infrared thermography, nuclear magnetic resonance, bioelectric impedance analysis, dilatometry, thermogravimetric analysis, and X-ray CT. HMT research mainly adopts porous media method, direct numerical simulation, cell growth simulation. Their applications focus on computational fluid dynamics and the lattice Boltzmann method. Furthermore, this paper highlights the application of the computer field in FVS precooling and provides perspectives on the directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T :

Temperature (K)

t :

Time (s)

ξ :

Migration resistance of water vapor

x, y, z :

Coordinates (m)

ρ :

Density (kg m−3)

C :

Specific heat (J kg−1 K−1)

λ :

Thermal conductivity (W m−1 K−1)

r, φ, z :

Cylindrical coordinates

r, θ, φ :

Spherical coordinates

h :

Convective heat transfer coefficient (W m−2 K−1)

f v :

Vapor generation rate of product (kg m−3 s−1)

M :

Molecular weight (kg kmol−1)

D :

Diffusion coefficient (m2 s−1)

τ :

Tortuosity factor

ϵ :

Porosity

D eff :

Effective moisture diffusivity (m2s−1)

X :

Moisture content (kg kg−1)

R :

Universal gas constant (= 8.314 kJ kmol−1 K−1)

λ eff :

Effective thermal conductivity (W m−1 K−1)

T f :

Fluid temperature (K)

T s :

Solid temperature (K)

ρ w , c :

Wet base cell density (kg m−3)

D c :

Water diffusion coefficient inside cells (m2s−1)

ρ c :

Cell density (kg m−3)

C w, c :

Water content on wet base (kg kg−1)

u :

Velocity (m s−1)

P :

Pressure (Pa)

μ :

Dynamic viscosity (N s m−2)

μ t :

Turbulent viscosity (kg m−1 s−1)

C μ :

Empirical turbulence model constant

k :

Turbulent kinetic energy (m2s−2)

ε :

Turbulent dissipation rate (m2s−3)

ω :

Specific dissipation (s−1)

S u :

Momentum source term (m s−2)

ρ a :

Air density (kg m−3)

k a :

Thermal conductivity of air (W m−1 K−1)

k t :

Turbulent thermal conductivity (W m−1 K−1)

Q :

Heat generation

T a :

Air temperature (K)

ρ f :

Fluid density (kg m−3)

ρ s :

Solid density (kg m−3)

λ s :

Solid thermal conductivity (W m−1 K−1)

A :

Specific solid–fluid interface surface area (m2)

ξ :

Migration resistance of water vapor

References

  1. Duan Y, Wang G-B, Fawole OA, Verboven P, Zhang X-R, Wu D, Opara UL, Nicolai B, Chen K (2020) Postharvest precooling of fruit and vegetables: a review. Trends Food Sci Technol 100:278–291. https://doi.org/10.1016/j.tifs.2020.04.027

    Article  CAS  Google Scholar 

  2. Han J-W, Zuo M, Zhu W-Y, Zuo J-H, Lü E-L, Yang X-T (2021) A comprehensive review of cold chain logistics for fresh agricultural products: current status, challenges, and future trends. Trends Food Sci Technol 109:536–551. https://doi.org/10.1016/j.tifs.2021.01.066

    Article  CAS  Google Scholar 

  3. Brosnan T, Sun D-W (2001) Precooling techniques and applications for horticultural products — a review. Int J Refrig 24(2):154–170. https://doi.org/10.1016/S0140-7007(00)00017-7

  4. Zhao C-J, Han J-W, Yang X-T, Qian J-P, Fan B-L (2016) A review of computational fluid dynamics for forced-air cooling process. Appl Energy 168:314–331. https://doi.org/10.1016/j.apenergy.2016.01.101

    Article  Google Scholar 

  5. Ambaw A, Mukama M, Opara UL (2017) Analysis of the effects of package design on the rate and uniformity of cooling of stacked pomegranates: numerical and experimental studies. Comput Electron Agric 136:13–24. https://doi.org/10.1016/j.compag.2017.02.015

  6. Fanta SW, Abera MK, Ho QT, Verboven P, Carmeliet J, Nicolai BM (2013) Microscale modeling of water transport in fruit tissue. J Food Eng 118(2):229–237. https://doi.org/10.1016/j.jfoodeng.2013.04.003

    Article  CAS  Google Scholar 

  7. Pathare PB, Opara UL, Vigneault C, Delele MA, Al-Said FA-J (2012) Design of packaging vents for cooling fresh horticultural produce. Food Bioprocess Technol 5(6):2031–2045. https://doi.org/10.1007/s11947-012-0883-9

    Article  Google Scholar 

  8. Fabbri A, Cevoli C (2016) Rheological parameters estimation of non-Newtonian food fluids by finite elements model inversion. J Food Eng 169:172–178. https://doi.org/10.1016/j.jfoodeng.2015.08.035

    Article  Google Scholar 

  9. Nalbandi H, Seiiedlou S (2020) Exploration of heat and momentum transfer in turbulent mode during the precooling process of fruit. Food Sci Nutr 8(8):4098–4111. https://doi.org/10.1002/fsn3.1682

  10. Datta AK (2008) Status of physics-based models in the design of food products, processes, and equipment. Comprehensive Reviews in Food Science and Food Safety 7(1):121–129. https://doi.org/10.1111/j.1541-4337.2007.00030.x

    Article  Google Scholar 

  11. Marra F (2016) Virtualization of processes in food engineering. J Food Eng 176:1–1. https://doi.org/10.1016/j.jfoodeng.2016.01.021

    Article  Google Scholar 

  12. Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: problem formulations. J Food Eng 80(1):80–95. https://doi.org/10.1016/j.jfoodeng.2006.05.013

  13. Abera MK, Fanta SW, Verboven P, Ho QT, Carmeliet J, Nicolai BM (2013) Virtual fruit tissue generation based on cell growth modelling. Food Bioprocess Technol 6(4):859–869. https://doi.org/10.1007/s11947-011-0775-4

    Article  CAS  Google Scholar 

  14. Ajani CK, Zhu ZW, Sun DW (2021) Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry. Crit Rev Food Sci Nutr 61(15):2455–2470. https://doi.org/10.1080/10408398.2020.1809992

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Z, Li Y, Sun D-W, Wang H-W (2019) Developments of mathematical models for simulating vacuum cooling processes for food products - a review. Crit Rev Food Sci Nutr 59(5):715–727. https://doi.org/10.1080/10408398.2018.1490696

    Article  PubMed  Google Scholar 

  16. Han JW, Badia-Melis R, Yang XT, Ruiz-garcia L, Qian JP, Zhao CJ (2017) CFD simulation of airflow and heat transfer during forced-air precooling of apples. J Food Process Eng 40(2):Article e12390. https://doi.org/10.1111/jfpe.12390

  17. Lrde C, Vigneault C, Lab C (2005) Effect of container openings and airflow rate on energy required for forced-air cooling of horticultural produce. Can Biosyst Eng 47. https://doi.org/10.13031/2013.19608

  18. Wang X-F, Fan Z-Y, Li B-G, Liu E-H (2021) Variable air supply velocity of forced-air precooling of iceberg lettuces: optimal cooling strategies. Appl Ther Eng 187:116484. https://doi.org/10.1016/j.applthermaleng.2020.116484

  19. Chourasia MK, Goswami TK (2007) CFD simulation of effects of operating parameters and product on heat transfer and moisture loss in the stack of bagged potatoes. J Food Eng 80(3):947–960. https://doi.org/10.1016/j.jfoodeng.2006.07.015

    Article  Google Scholar 

  20. Cortbaoui P, Goyette B, Gariépy Yv, Charles MT, Raghavan VGS, Vigneault C (2006) Forced air cooling system for Zea mays. J Food Agric Environ 4:100. https://doi.org/10.1234/4.2006.702.

  21. Delele MA, Ngcobo MEK, Getahun ST, Chen L, Mellmann J, Opara UL (2013) Studying airflow and heat transfer characteristics of a horticultural produce packaging system using a 3-D CFD model. Part I: Model development and validation. Postharvest Biol Technol 86:536–545. https://doi.org/10.1016/j.postharvbio.2013.08.014

    Article  Google Scholar 

  22. Han J-W, Zhao C-J, Qian J-P, Ruiz-Garcia L, Zhang X (2018) Numerical modeling of forced-air cooling of palletized apple: integral evaluation of cooling efficiency. International Journal Of Refrigeration-Revue Internationale Du Froid 89:131–141. https://doi.org/10.1016/j.ijrefrig.2018.02.012

    Article  Google Scholar 

  23. Zainal B, Ding P, Ismail IS, Saari N (2019) Physico-chemical and microstructural characteristics during postharvest storage of hydrocooled rockmelon (Cucumis melo L. reticulatus cv. Glamour). Postharvest Biol Technol 152:89–99. https://doi.org/10.1016/j.postharvbio.2019.03.001

  24. Edinaldo dOAS, da Silva PSO, de Araujo, HGS, de Aragão Batista MC, Matos PN, Sargent SA, de Oliveira Junior LFG, Carnelossi MAG (2019) Postharvest quality of cashew apple after hydrocooling and coold room. Postharvest Biol Technol 155:65–71. https://doi.org/10.1016/j.postharvbio.2019.05.002

  25. Kongwong P, Boonyakiat D, Poonlarp P (2019) Extending the shelf life and qualities of baby cos lettuce using commercial precooling systems. Postharvest Biol Technol 150:60–70. https://doi.org/10.1016/j.postharvbio.2018.12.012

    Article  CAS  Google Scholar 

  26. Zhu Z, Geng Y, Sun D-W (2019) Effects of operation processes and conditions on enhancing performances of vacuum cooling of foods: a review. Trends Food Sci Technol 85:67–77. https://doi.org/10.1016/j.tifs.2018.12.011

  27. Wang N, Kan A, Mao S, Huang Z, Li F (2021) Study on heat and mass transfer of sugarcane stem during vacuum pre-cooling. J Food Eng 292:110288. https://doi.org/10.1016/j.jfoodeng.2020.110288

  28. Farid M (2019) Chapter 17 - Heat and mass transfer in food processing. In M. Kutz (Ed.), Handbook of Farm, Dairy and Food Machinery Engineering (Third Edition) (pp. 439–460). Academic Press. https://doi.org/10.1016/B978-0-12-814803-7.00017-8

  29. Le Bideau P, Noel H, Yassine H, Glouannec P (2018) Experimental and numerical studies for the air cooling of fresh cauliflowers. Appl Therm Eng 137:238–247. https://doi.org/10.1016/j.applthermaleng.2018.03.077

    Article  Google Scholar 

  30. Wang L, Sun D-W (2005) Heat and mass transfer in thermal food processing. Food Sci Technol 35–71. https://doi.org/10.1201/9781420027372.ch2

  31. Huang Z, Kan A, Lu J, Li F, Wang T (2021) Numerical simulation and experimental study of heat and mass transfer in cylinder-like vegetables during vacuum cooling. Innov Food Sci Emerg Technol 68:102607. https://doi.org/10.1016/j.ifset.2021.102607

    Article  Google Scholar 

  32. Becker B, Misra A, Fricke B (1996) Bulk refrigeration of fruits and vegetables part I: theoretical considerations of heat and mass transfer. HVAC&R Research 2(2):122–134. https://doi.org/10.1080/10789669.1996.10391338

    Article  Google Scholar 

  33. Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: property data and representative results. J Food Eng 80(1):96–110. https://doi.org/10.1016/j.jfoodeng.2006.05.012

  34. Feyissa AH, Christensen MG, Pedersen SJ, Hickman M, Adler-Nissen J (2015) Studying fluid-to-particle heat transfer coefficients in vessel cooking processes using potatoes as measuring devices. J Food Eng 163:71–78. https://doi.org/10.1016/j.jfoodeng.2015.04.022

    Article  Google Scholar 

  35. van der Sman RGM, Meinders MBJ (2013) Moisture diffusivity in food materials. Food Chem 138(2–3):1265–1274. https://doi.org/10.1016/j.foodchem.2012.10.062

    Article  CAS  PubMed  Google Scholar 

  36. Khan MIH, Karim MA (2017) Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Res Int 99:1–14. https://doi.org/10.1016/j.foodres.2017.06.037

    Article  CAS  PubMed  Google Scholar 

  37. Dadmohammadi Y, Kantzas A, Yu X, Datta AK (2020) Estimating permeability and porosity of plant tissues: evolution from raw to the processed states of potato. J Food Eng 277:Article 109912. https://doi.org/10.1016/j.jfoodeng.2020.109912

  38. Dehghannya J, Ngadi M, Vigneault C (2010) Mathematical modeling procedures for airflow, heat and mass transfer during forced convection cooling of produce: a review. Food Engineering Reviews 2(4):227–243. https://doi.org/10.1007/s12393-010-9027-z

    Article  Google Scholar 

  39. Chen YM, Song HY, Chen ZS, Zhao R, Su Q, Jin PY, Sun YS, Wang H (2020) Sensitivity analysis of heat and mass transfer characteristics during forced-air cooling process of peaches on different air-inflow velocities. Food Sci Nutr 8(12):6592–6602. https://doi.org/10.1002/fsn3.1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Defraeye T, Derome D, Verboven P, Carmeliet J, Nicolai B (2014) Cross-scale modelling of transpiration from stomata via the leaf boundary layer. Ann Bot 114(4):711–723. https://doi.org/10.1093/aob/mct313

    Article  PubMed  PubMed Central  Google Scholar 

  41. Warning A, Datta AK, Bartz JA (2016) Mechanistic understanding of temperature-driven water and bacterial infiltration during hydrocooling of fresh produce. Postharvest Biol Technol 118:159–174. https://doi.org/10.1016/j.postharvbio.2016.03.018

    Article  CAS  Google Scholar 

  42. Sun DW, Hu ZH (2003) CFD simulation of coupled heat and mass transfer through porous foods during vacuum cooling process. Int J Refrig-Revue Internationale Du Froid 26(1):19–27 Article Pii s0140–7007(02)00038–5. https://doi.org/10.1016/s0140-7007(02)00038-5

  43. Norton T, Sun D-W (2006) Computational fluid dynamics (CFD) – an effective and efficient design and analysis tool for the food industry: a review. Trends Food Sci Technol 17(11):600–620. https://doi.org/10.1016/j.tifs.2006.05.004

  44. Gong Y-F, Cao Y, Zhang X-R (2021) Forced-air precooling of apples: airflow distribution and precooling effectiveness in relation to the gap width between tray edge and box wall. Postharvest Biol Technol 177:111523. https://doi.org/10.1016/j.postharvbio.2021.111523

  45. Erdogdu F, Sarghini F, Marra F (2017) Mathematical modeling for virtualization in food processing. Food Engineering Reviews 9(4):295–313. https://doi.org/10.1007/s12393-017-9161-y

    Article  Google Scholar 

  46. Purlis E, Cevoli C, Fabbri A (2021) Modelling volume change and deformation in food products/processes: an overview. Foods 10(4). https://doi.org/10.3390/foods10040778

  47. Putranto A, Chen XD, Xiao Z, Webley PA (2011) Simple, accurate and robust modeling of various systems of drying of foods and biomaterials: a demonstration of the feasibility of the Reaction Engineering Approach (REA). Drying Technol 29(13):1519–1528. https://doi.org/10.1080/07373937.2011.580407

    Article  Google Scholar 

  48. Erbay Z, Icier F (2010) A review of thin layer drying of foods: theory, modeling, and experimental results. Crit Rev Food Sci Nutr 50(5):441–464. https://doi.org/10.1080/10408390802437063

    Article  PubMed  Google Scholar 

  49. Castro AM, Mayorga EY, Moreno FL (2018) Mathematical modelling of convective drying of fruits: a review. J Food Eng 223:152–167. https://doi.org/10.1016/j.jfoodeng.2017.12.012

    Article  Google Scholar 

  50. Transtrum MK, Qiu P (2016) Bridging mechanistic and phenomenological models of complex biological systems. PLoS Comput Biol 12(5):e1004915. https://doi.org/10.1371/journal.pcbi.1004915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang W, Chen G, Mujumdar AS (2007) Physical interpretation of solids drying: an overview on mathematical modeling research. Drying Technol 25(4–6):659–668. https://doi.org/10.1080/07373930701285936

    Article  Google Scholar 

  52. Defraeye T, Radu A (2017) Convective drying of fruit: a deeper look at the air-material interface by conjugate modeling. Int J Heat Mass Transf 108:1610–1622. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.002

    Article  Google Scholar 

  53. Esfahani JA, Vahidhosseini SM, Barati E (2015) Three-dimensional analytical solution for transport problem during convection drying using Green’s function method (GFM). Appl Therm Eng 85:264–277. https://doi.org/10.1016/j.applthermaleng.2015.04.016

    Article  Google Scholar 

  54. Datta AK (2016) Toward computer-aided food engineering: mechanistic frameworks for evolution of product, quality and safety during processing. J Food Eng 176:9–27. https://doi.org/10.1016/j.jfoodeng.2015.10.010

    Article  Google Scholar 

  55. Wang LJ, Sun DW (2003) Recent developments in numerical modelling of heating and cooling processes in the food industry - a review. Trends Food Sci Technol 14(10):408–423. https://doi.org/10.1016/s0924-2244(03)00151-1

    Article  CAS  Google Scholar 

  56. Ho QT, Carmeliet J, Datta AK, Defraeye T, Delele MA, Herremans E, Opara L, Ramon H, Tijskens E, van der Sman R, Van Liedekerke P, Verboven P, Nicolai BM (2013) Multiscale modeling in food engineering. J Food Eng 114(3):279–291. https://doi.org/10.1016/j.jfoodeng.2012.08.019

    Article  Google Scholar 

  57. Getahun S, Ambaw A, Delele M, Meyer CJ, Opara UL (2017) Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part I – Model development and validation. J Food Eng 203:58–68. https://doi.org/10.1016/j.jfoodeng.2017.02.010

  58. Hoang H-M, Duret S, Flick D, Laguerre O (2015) Preliminary study of airflow and heat transfer in a cold room filled with apple pallets: comparison between two modelling approaches and experimental results. Appl Therm Eng 76:367–381. https://doi.org/10.1016/j.applthermaleng.2014.11.012

    Article  Google Scholar 

  59. Curcio S, Aversa M, Chakraborty S, Calabro V, Iorio G (2016) Formulation of a 3D conjugated multiphase transport model to predict drying process behavior of irregular-shaped vegetables. J Food Eng 176:36–55. https://doi.org/10.1016/j.jfoodeng.2015.11.020

    Article  Google Scholar 

  60. Ferrua M, Singh R (2007) Modelling airflow through vented packages containing horticultural products. Comput Fluid Dynamics Food Process 661–667.

  61. Nijemeisland M, Dixon AG (2004) CFD study of fluid flow and wall heat transfer in a fixed bed of spheres. Aiche J 50(5):906–921. https://doi.org/10.1002/aic.10089

  62. Ferrua MJ, Singh RP (2008) A nonintrusive flow measurement technique to validate the simulated laminar fluid flow in a packed container with vented walls. Int J Refrig-Revue Internationale Du Froid 31(2):242–255. https://doi.org/10.1016/j.ijrefrig.2007.05.013

  63. Ho QT, Verboven P, Verlinden BE, Herremans E, Wevers M, Carmeliet J, Nicolaï BM (2011) A three-dimensional multiscale model for gas exchange in fruit. Plant Physiol 155(3):1158–1168. https://doi.org/10.1104/pp.110.169391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fanta SW, Abera MK, Aregawi WA, Quang Tri H, Verboven P, Carmeliet J, Nicolai BM (2014) Microscale modeling of coupled water transport and mechanical deformation of fruit tissue during dehydration. J Food Eng 124:86–96. https://doi.org/10.1016/j.jfoodeng.2013.10.007

    Article  CAS  Google Scholar 

  65. Defraeye T, Verboven P (2017) Convective drying of fruit: role and impact of moisture transport properties in modelling. J Food Eng 193:95–107. https://doi.org/10.1016/j.jfoodeng.2016.08.013

    Article  Google Scholar 

  66. Rogge S, Defraeye T, Herremans E, Verboven P, Nicolaï BM (2015) A 3D contour based geometrical model generator for complex-shaped horticultural products. J Food Eng 157:24–32. https://doi.org/10.1016/j.jfoodeng.2015.02.006

    Article  Google Scholar 

  67. Gruyters W, Verboven P, Diels E, Rogge S, Smeets B, Ramon H, Defraeye T, Nicolaï BM (2018) Modelling cooling of packaged fruit using 3D shape models. Food Bioprocess Technol 11(11):2008–2020. https://doi.org/10.1007/s11947-018-2163-9

    Article  Google Scholar 

  68. Nugraha B, Verboven P, Janssen S, Hertog MLATM, Boone M, Josipovic I, Nicolaï BM (2021) Oxygen diffusivity mapping of fruit and vegetables based on X-ray CT. J Food Eng 306:110640. https://doi.org/10.1016/j.jfoodeng.2021.110640

    Article  CAS  Google Scholar 

  69. Antequera T, Caballero D, Grassi S, Uttaro B, Perez-Palacios T (2021) Evaluation of fresh meat quality by hyperspectral imaging (HSI), nuclear magnetic resonance (NMR) and Magnetic resonance imaging (MRI): a review. Meat Sci 172:108340. https://doi.org/10.1016/j.meatsci.2020.108340

  70. Nicolaï BM, Verboven P, Scheerlinck N (2001) 4 - The modelling of heat and mass transfer. In Tijskens LMM, Hertog MLATM, Nicolaï BM (Eds.), Food Process Model (pp. 60–86). Woodhead Publishing. https://doi.org/10.1533/9781855736375.1.60

  71. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: Its basis and fundamentals. In Zienkiewicz OC, Taylor RL, Zhu JZ (Eds.), The Finite Element Method: its Basis and Fundamentals (Seventh Edition) (pp. i). Butterworth-Heinemann. https://doi.org/10.1016/B978-1-85617-633-0.00019-8

  72. Mauro JC (2021) Chapter 6 - Numerical solutions of the diffusion equation. In Mauro JC (Ed.), Mater Kinetics (pp. 99–108). Elsevier. https://doi.org/10.1016/B978-0-12-823907-0.00025-X

  73. Jeong W, Seong J (2014) Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods. Int J Mech Sci 78:19–26. https://doi.org/10.1016/j.ijmecsci.2013.10.017

  74. Mauricio V-RJ, Francisco S-VW (2017) Modeling Heat transfer during blanching of cubic particles of Loche (Cucurbita moschata Duch.) and potato (Solanum tuberosum L.) Using Finite Difference Method. J Food Process Eng 40(3):Article e12451. https://doi.org/10.1111/jfpe.12451

  75. Lopes D, Agujetas R, Puga H, Teixeira J, Lima R, Alejo JP, Ferrera C (2021) Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. Int J Mech Sci 207:106650. https://doi.org/10.1016/j.ijmecsci.2021.106650

  76. Icier F, Cokgezme ÖF, Döner D, Bayana D, Kaya O, Çabas BM (2021) Mathematical modelling of vacuum ohmic evaporation process. Innov Food Sci Emerg Technol 67:102560. https://doi.org/10.1016/j.ifset.2020.102560

  77. Arias-Mendez A, Vilas C, Alonso AA, Balsa-Canto E (2014) Time-temperature integrators as predictive temperature sensors. Food Control 44:258–266. https://doi.org/10.1016/j.foodcont.2014.04.001

    Article  Google Scholar 

  78. Cerqueira RFL, Paladino EE, Ynumaru BK, Maliska CR (2018) Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV). Chem Eng Sci 189:1–23. https://doi.org/10.1016/j.ces.2018.05.029

  79. Al-Shemmeri M, Windows-Yule K, Lopez-Quiroga E, Fryer PJ (2021) Coffee bean particle motion in a spouted bed measured using positron emission particle Tracking (PEPT). J Food Eng 311:Article 110709. https://doi.org/10.1016/j.jfoodeng.2021.110709

  80. Isola JVV, Menegazzi G, Busanello M, dos Santos SB, Agner HSS, Sarubbi J (2020). Differences in body temperature between black-and-white and red-and-white Holstein cows reared on a hot climate using infrared thermography. J Ther Biol 94:102775. https://doi.org/10.1016/j.jtherbio.2020.102775

  81. Malekjani N, Jafari SM (2018) Simulation of food drying processes by Computational Fluid Dynamics (CFD): recent advances and approaches. Trends Food Sci Technol 78:206–223. https://doi.org/10.1016/j.tifs.2018.06.006

    Article  CAS  Google Scholar 

  82. Norton T, Tiwari B, Sun DW (2013) Computational fluid dynamics in the design and analysis of thermal processes: a review of recent advances. Crit Rev Food Sci Nutr 53(3):251–275. https://doi.org/10.1080/10408398.2010.518256

    Article  PubMed  Google Scholar 

  83. Boz Z, Erdogdu F, Tutar M (2014) Effects of mesh refinement, time step size and numerical scheme on the computational modeling of temperature evolution during natural-convection heating. J Food Eng 123:8–16. https://doi.org/10.1016/j.jfoodeng.2013.09.008

    Article  Google Scholar 

  84. Cardinale T, De Fazio P, Grandizio F (2016) Numerical and experimental computation of airflow in a transport container. Int J Heat Tech 34(4):734–742. https://doi.org/10.18280/ijht.340426

  85. Hussein MA, Becker T (2010) An innovative micro-modelling of simultaneous heat and moisture transfer during bread baking using the lattice Boltzmann method. Food Biophys 5(3):161–176. https://doi.org/10.1007/s11483-010-9156-1

    Article  Google Scholar 

  86. Obrecht C, Kuznik F, Merlier L, Roux J-J, Tourancheau B (2015) Towards aeraulic simulations at urban scale using the lattice Boltzmann method. Environ Fluid Mech 15(4):753–770. https://doi.org/10.1007/s10652-014-9381-0

    Article  Google Scholar 

  87. Gaedtke M, Wachter S, Rädle M, Nirschl H, Krause MJ (2018) Application of a lattice Boltzmann method combined with a Smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle. Comput MathAppl 76(10):2315–2329. https://doi.org/10.1016/j.camwa.2018.08.018

  88. Defraeye T, Herremans E, Verboven P, Carmeliet J, Nicolai B (2012) Convective heat and mass exchange at surfaces of horticultural products: a microscale CFD modelling approach. Agric Forest Meteorol 162–163, 71–84. https://doi.org/10.1016/j.agrformet.2012.04.010

  89. Welsh Z, Simpson MJ, Khan MIH, Karim MA (2018) Multiscale modeling for food drying: state of the art. Compr Rev Food Sci Food Saf 17(5):1293–1308. https://doi.org/10.1111/1541-4337.12380

    Article  PubMed  Google Scholar 

  90. Wang N, Kan A, Huang Z, Lu J (2019) CFD simulation of heat and mass transfer through cylindrical Zizania latifolia during vacuum cooling. Heat And Mass Transfer 56(2):627–637. https://doi.org/10.1007/s00231-019-02736-5

    Article  CAS  Google Scholar 

  91. Chandramohan VP (2016) Numerical prediction and analysis of surface transfer coefficients on moist object during heat and mass transfer application. Heat Transfer Eng 37(1):53–63. https://doi.org/10.1080/01457632.2015.1042341

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the National Natural Science Foundation of China Program in 2022 (Grant No. 3216160344), and Key R&D Program of Ningxia Hui Autonomous Region in 2018, and “Research and development of key technology and equipment for cold chain storage of typical fruits and vegetables in Ningxia” (Grant No. 2018BCF01001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guishan Liu.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Guo, M., Liu, G. et al. Research Progress in Simultaneous Heat and Mass Transfer of Fruits and Vegetables During Precooling. Food Eng Rev 14, 307–327 (2022). https://doi.org/10.1007/s12393-022-09309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09309-z

Keywords

Navigation