Skip to main content

Advertisement

Log in

High Hydrostatic Pressure Modulates the Folate and Ascorbic Acid Accumulation in Papaya (Carica papaya cv. Maradol) Fruit

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

High hydrostatic pressure (HHP) has previously induced de novo carotenoid (provitamin A) biosynthesis in papaya fruit tissue, possibly as a response to the oxidative stress. Papaya is also an excellent source of other vitamins, such as tetrahydrofolate (THF), its derivatives (folates, vitamin B9), and ascorbic acid (vitamin C). This work evaluated the immediate effects of HHP treatments (50–400 MPa for 3–60 min) on folate and ascorbic acid contents of fresh-cut papaya fruit. Folates and ascorbic acid were characterized by high-performance-liquid-chromatography with electrochemical and diode-array detections (HPLC-EC and DAD, respectively). Ascorbic acid levels increased in all conditions (4–28%) when compared with non-treated controls. 5-Methyl-THF (5-CH3-THF) (73%) and THF (22%) were the main folate species present in papaya fruit. HHP treatments increased 5-CH3-THF and total folate contents by 35% and 25%, at lower (50–100 MPa) and higher (400 MPa) pressures for 30 min, respectively. Folate molecule contains a glutamyl tail, involved in its function as a cofactor, tissue localization, and stability. 5-CH3-THF from papaya fruit exists with a very long polyglutamyl tail (Glu1–17). Both pressure and time increased concentrations of 5-CH3-THF Glu1 species (up to 250%), mainly at the 100 and 400 MPa/30 min conditions, whereas the polyglutamyl forms (Glu2–17) were not affected. Results documented, for the first time, that specific HHP treatments can positively modulate accumulation of vitamins B9 and C in papaya fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akhtar TA, McQuinn RP, Naponelli V, Gregory JF, Giovannoni JJ, Hanson AD (2008) Tomato γ-glutamyl hydrolases: expression, characterization, and evidence for heterodimer formation. Plant Physiol 148(2):775–785. https://doi.org/10.1104/pp.108.124479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:1–17. https://doi.org/10.3389/fpls.2017.00613

    Article  Google Scholar 

  3. Bermúdez-Aguirre D, Barbosa-Cánovas GV (2011) An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Eng Rev 3(1):44–61. https://doi.org/10.1007/s12393-010-9030-4

    Article  Google Scholar 

  4. Butz P, Serfert Y, Fernandez-Garcia A, Dieterich S, Lindauer R, Bognar A, Tauscher B (2004) Influence of High-Pressure Treatment at 25°C and 80°C on Folates in Orange Juice and Model Media. J Food Sci 69(3):SNQ117–SNQ121. https://doi.org/10.1111/j.1365-2621.2004.tb13380.x

  5. Cai Z, Riedel H, Saw NMMT, Mewis I, Reineke K, Knorr D, Smetanska I (2011) Effects of elicitors and high hydrostatic pressure on secondary metabolism of Vitis vinifera suspension culture. Process Biochem 46(7):1411–1416. https://doi.org/10.1016/j.procbio.2011.03.015

    Article  CAS  Google Scholar 

  6. Castorena-Torres F, Ramos-Parra PA, Hernández-Méndez RV, Vargas-García A, García-Rivas G, Díaz de la Garza RI (2014) Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model. Plant Food Hum Nutr 69(1):57–64. https://doi.org/10.1007/s11130-013-0402-9

    Article  CAS  Google Scholar 

  7. Cheftel JC (1995) Review: high-pressure, microbial inactivation and food preservation. Food Sci Technol Int 1(2–3):75–90. https://doi.org/10.1177/108201329500100203

    Article  Google Scholar 

  8. Davey MW, Van Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N et al (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agr 80(7):825–860. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7%3c825::AID-JSFA598%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  9. Dörnenburg H, Knorr D (1998) Monitoring the impact of high-pressure processing on the biosynthesis of plant metabolites using plant cell cultures. Trends Food Sci Technol 9(10):355–361. https://doi.org/10.1016/S0924-2244(98)00058-2

    Article  Google Scholar 

  10. FAOSTAT (2019) Food and Agriculture Organization of the United Nations. Crops statistic. https://www.fao.org/faostat/en/#data/QC/visualize. Accessed 20 April 2001

  11. García-Salinas C, Ramos-Parra PA, Díaz de la Garza RI (2016) Ethylene treatment induces changes in folate profiles in climacteric fruit during postharvest ripening. Postharvest Biol Tec 118:43–50. https://doi.org/10.1016/j.postharvbio.2016.03.011

    Article  CAS  Google Scholar 

  12. Garza-Aguilar SM, García-Salinas C, Mejía-Ponce PM, Licona-Cassani C, Ramos-Parra PA, Díaz de la Garza RI (2020) The complexity of folate polyglutamylation in plants: postharvest ripening and ethylene modulate polyglutamylated profiles in climacteric fruits plus systematic analysis of the glutamyl tail-editing enzymes. Sci Hortic 273(April):109588. https://doi.org/10.1016/j.scienta.2020.109588

    Article  CAS  Google Scholar 

  13. Gökmen V, Kahraman N, Demir N, Acar J (2000) Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables. J Chromatogr A 881(1–2):309–316. https://doi.org/10.1016/S0021-9673(00)00080-7

    Article  PubMed  Google Scholar 

  14. Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, Cuypers A et al (2017) Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell 29(11):2831–2853. https://doi.org/10.1105/tpc.17.00433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanson AD, Gregory JF III (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62(1):105–125. https://doi.org/10.1146/annurev-arplant-042110-103819

    Article  CAS  PubMed  Google Scholar 

  16. Harrison FE, May JM (2009) Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radical Bio Med 46(6):719–730. https://doi.org/10.1016/j.freeradbiomed.2008.12.018

    Article  CAS  Google Scholar 

  17. Hernández-Brenes C, Ramos-Parra PA, Jacobo-Velázquez DA, Villarreal-Lara R, Díaz-De La Garza RI (2013) High hydrostatic pressure processing as a strategy to increase carotenoid contents of tropical fruits. ACS Symp Ser 1129:29–42. https://doi.org/10.1021/bk-2013-1129.ch002

    Article  CAS  Google Scholar 

  18. Indrawati C, Arroqui C, Messagie I, Nguyen MT, Van Loey A, Hendrickx M (2004) Comparative study on pressure and temperature stability of 5-methyltetrahydrofolic acid in model systems and in food products. J Agric Food Chem 52(3):485–492. https://doi.org/10.1021/jf0349432

    Article  CAS  PubMed  Google Scholar 

  19. Kim DO, Lee CY (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr 44(4):253–273. https://doi.org/10.1080/10408690490464960

    Article  CAS  PubMed  Google Scholar 

  20. Luo S, Duan H, Zou Y, Wang C (2017) High pressure processing and post-high pressure storage induce the change of polyglutamyl folate and total folate from different legumes. J Food Sci Technol 54(11):3521–3531. https://doi.org/10.1007/s13197-017-2809-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Melse-Boonstra A, Verhoef P, Konings EJM, Van Dusseldorp M, Matser A, Hollman PCH et al (2002) Influence of processing on total, monoglutamate and polyglutamate folate contents of leeks, cauliflower, and green beans. J Agric Food Chem 50(12):3473–3478. https://doi.org/10.1021/jf0112318

    Article  CAS  PubMed  Google Scholar 

  22. Melse-Boonstra A, Verhoef P, West CE, Van Rhijn JA, Van Breemen RB, Lasaroms JJP et al (2006) A dual-isotope-labeling method of studying the bioavailability of hexaglutamyl folic acid relative to that of monoglutamyl folic acid in humans by using multiple orally administered low doses. Am J Clinl Nutr 84(5):1128–1133. https://doi.org/10.1093/ajcn/84.5.1128

    Article  CAS  Google Scholar 

  23. Munyaka AW, Verlinde P, Mukisa IM, Oey I, Van Loey A, Hendrickx M (2010) Influence of thermal processing on hydrolysis and stability of folate poly-γ-glutamates in broccoli (Brassica oleracea var. italica), carrot (Daucus carota) and tomato (Lycopersicon esculentum). J Agric Food Chem 58(7):4230–4240. https://doi.org/10.1021/jf100004w

  24. Navarrete O, Van Daele J, Stove C, Lambert W, Van Der Straeten D, Storozhenko S (2012) A folate independent role for cytosolic HPPK/DHPS upon stress in Arabidopsis thaliana. Phytochemistry 73:23–33. https://doi.org/10.1016/j.phytochem.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  25. Orsomando G, De la Garza RD, Green BJ, Peng M, Rea PA, Ryan TJ et al (2005) Plant γ-glutamyl hydrolases and folate polyglutamates: characterization, compartmentation, and co-occurrence in vacuoles. J Biol Chem 280(32):28877–28884. https://doi.org/10.1074/jbc.M504306200

    Article  CAS  PubMed  Google Scholar 

  26. Ramos-Parra PA, García-Salinas C, Hernández-Brenes C, Díaz De La Garza RI (2013) Folate levels and polyglutamylation profiles of papaya (Carica papaya cv. Maradol) during fruit development and ripening. J Agric Food Chem 61(16):3949–3956. https://doi.org/10.1021/jf305364x

  27. Ramos-Parra PA, García-Salinas C, Rodríguez-López CE, García N, García-Rivas G, Hernández-Brenes C, Díaz de la Garza RI (2019) High hydrostatic pressure treatments trigger de novo carotenoid biosynthesis in papaya fruit (Carica papaya cv. Maradol). Food Chem 277:362–372. https://doi.org/10.1016/j.foodchem.2018.10.102

    Article  CAS  PubMed  Google Scholar 

  28. Ramos-Parra PA, Urrea-López R, Díaz de la Garza RI (2013) Folate analysis in complex food matrices: use of a recombinant Arabidopsis γ-glutamyl hydrolase for folate deglutamylation. Food Res Int 54(1):177–185. https://doi.org/10.1016/j.foodres.2013.06.026

    Article  CAS  Google Scholar 

  29. Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rébeillé F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279(21):22548–22557. https://doi.org/10.1074/jbc.M313250200

    Article  CAS  PubMed  Google Scholar 

  30. Sánchez-Moreno C, de Ancos B, Plaza L, Elez-Martinez P, Pilar-Cano M (2009) and Health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit Rev Food Sci Nutr 49:552–576. https://doi.org/10.1080/10408390802145526

    Article  CAS  PubMed  Google Scholar 

  31. Schreck S, Dörnenburg H, Knorr D (1996) Evaluation of hydrogen peroxide production in tomato (Lycopersicon esculentum) suspension cultures as a stress reaction to high pressure treatment. Food Biotechnol 10(2):163–171. https://doi.org/10.1080/08905439609549909

    Article  CAS  Google Scholar 

  32. Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31(8):1086–1096. https://doi.org/10.1111/j.1365-3040.2008.01824.x

    Article  CAS  PubMed  Google Scholar 

  33. USDA (2020) US Department of Agriculture. FoodData Central. Agricultural Research Service. https://fdc.nal.usda.gov/fdc-app.html#/food-details/. Accessed 6 May 2020

  34. Verlinde P, Oey I, Hendrickx M, Van Loey A (2008) High-pressure treatments induce folate polyglutamate profile changes in intact broccoli (Brassica oleraceae L. cv. Italica) tissue. Food Chem 111(1):220–229. https://doi.org/10.1016/j.foodchem.2008.03.065

  35. Wang C, Riedl KM, Somerville J, Balasubramaniam VM, Schwartz SJ (2011) Influence of high-pressure processing on the profile of polyglutamyl 5-methyltetrahydrofolate in selected vegetables. J Agric Food Chem 59(16):8709–8717. https://doi.org/10.1021/jf201120n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dra. Carolina García-Salinas for technical help.

Funding

This research was funded by Tecnologico de Monterrey Micronutrient Chair (CAT198), Proeza Industrial Research Chair, and by the Mexican National Council on Science and Technology (CONACyT, doctoral scholarship 12399 to PARP, and Grant 243058 to RIDG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío I. Díaz de la Garza.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Parra, P.A., Hernández-Brenes, C. & Díaz de la Garza, R.I. High Hydrostatic Pressure Modulates the Folate and Ascorbic Acid Accumulation in Papaya (Carica papaya cv. Maradol) Fruit. Food Eng Rev 13, 613–621 (2021). https://doi.org/10.1007/s12393-020-09268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09268-3

Keywords

Navigation