Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Abiotic stresses (such as salinity, drought, cold, heat, mineral deficiency and metals/metalloids) have become major threats to the global agricultural production. These stresses in isolation and/or combination control plant growth, development and productivity by causing physiological disorders, ion toxicity, and hormonal and nutritional imbalances. Some soil microorganisms like arbuscular mycorhizal fungi (AMF) inhabit the rhizosphere and develop a symbiotic relationship with the roots of most plant species. AMF can significantly improve resistance of host plants to varied biotic and abiotic stresses. Taking into account recent literature, this paper: (a) overviews major abiotic stresses and introduces the arbuscular mycorrhizae symbiosis (b) appraises the role and underlying major mechanisms of AMF in plant tolerance to major abiotic stresses including salinity, drought, temperature regimes (cold and heat), nutrient-deficiency, and metal/metalloids; (c) discusses major molecular mechanisms potentially involved in AMF-mediated plant-abiotic stress tolerance; and finally (d) highlights major aspects for future work in the current direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour H, Saeid-Sar S, Afshari H, Abdel-Wahhab MA (2012) Tolerance of mycorrhiza infected Pistachio (Pistacia vera L.) seedlings to drought stress under glasshouse conditions. J Plant Physiol 169:704–709

    Article  CAS  PubMed  Google Scholar 

  • Abdel Latef AA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21:495–503

    Article  CAS  PubMed  Google Scholar 

  • Abdel Latef AA (2013) Growth and some physiological activities of pepper (Capsicum annuum L.) in response to cadmium stress and mycorrhizal symbiosis. J Agr Sci Tech 15:1437–1448

    CAS  Google Scholar 

  • Abdel Latef AA, Chaoxing H (2011a) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  CAS  Google Scholar 

  • Abdel Latef AA, Chaoxing H (2011b) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225

    Article  CAS  Google Scholar 

  • Abdel Latef AA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33:644–653

    Article  CAS  Google Scholar 

  • Abdel Latef AA, Miransari M (2014) The role of arbuscular mycorrhizal fungi in alleviation of salt stress. Use of microbes for the alleviation of soil stresses. Springer Science+Business Media, New York, USA, pp. 23–38

    Book  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress Crit Rev Biotechnol 30:161–175

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012a) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afric J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Ahmad P, Ozturk M, Gucel S (2012b) Oxidative damage and antioxidants induced by heavy metal stress in two cultivars of mustard (Brassica juncea L.) plants. Fres Environ Bull 21:2953–2961

    CAS  Google Scholar 

  • Ahmad P, Abdul Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Alguacil MM, Kohle RJ, Caravaca F, Roldána A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–95l

    Article  CAS  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot F, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  CAS  PubMed  Google Scholar 

  • Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol 11:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MA, Adam V, Fujita M, Kizek R, Duarte AC (2015) Jacks of metal(loid) chelation trade in plants -an overview. Front Plant Sci 6:192

    PubMed  PubMed Central  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sancher-Diaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015) Minimizing toxicity of cadmium in plants -role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50:305–316

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular mycorrhizal fungi symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón R, Ambrosano E, Charest C (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci 165:1137–1145

    Article  CAS  Google Scholar 

  • Azcón R, Medina A, Aroca R, Ruiz-Lozano JM (2013) Abiotic stress remediation by the arbuscular mycorrhizal symbiosis and rhizosphere bacteria/yeast interactions. In: Frans J. de Bruijn (ed.) Molecular Microbial Ecology of the Rhizosphere, Volume 2, 1st Ed. John Wiley & Sons, Ine, pp. 991–1002

    Chapter  Google Scholar 

  • Bagheri V, Shamshiri MH, Shirani H, Roosta H (2012) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J Agric Sci Technol 14(Suppl.):1591–1604

    Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballest MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorhhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22:347–359

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013) Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): a question of interest for both vegetables and humans. Review. Agriculture 3:188–209

    Article  CAS  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13:123–141

    Google Scholar 

  • Benabdellah K, Merlos MA, Azcón-Aguilar C, Ferrol N (2009) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103

    Article  CAS  PubMed  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper, TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plantfungus interactions in mycorrhizal symbiosis. Nat Commu 1:48

    Google Scholar 

  • Borde M, Dudhane M, Jite PK (2010) AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Not Sci Biol 2:64–71

    CAS  Google Scholar 

  • Burleigh SH, Bechmann IE (2002) Plant nutrient transporter regulation in arbuscular mycorrhizas. Plant Soil 244:247–25l

    Article  CAS  Google Scholar 

  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is upregulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Candido V. Candido, Campanelli G, D’Addabbo T, Castronuovo D, Perniola M, Camele I (2015) Growth and yield promoting effect of artificial mycorrhization on field tomato at different irrigation regimes Sci Hortic 187:35–43

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosys Environ 116:72–84

    Article  Google Scholar 

  • Çekiç FÖ, Ünyayar S, Ortas I (2012) Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turk J Bot 36:63–72

    Google Scholar 

  • Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolismin cucumber subjected to low temperature stress. Sci Hortic 160:222–229

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (1996) Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1505–1511

    Article  CAS  Google Scholar 

  • Clark RB, Baligar VC, Zobel RW (2005) Response of mycorrhizal switchgrass to phosphorus fractions in acidic soil. Commun Soil Sci Plant Anal 36:1337–1359

    Article  CAS  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig M, Borie F (2008) Glomalin related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  PubMed  Google Scholar 

  • da Silva LHB, De Miranda JCC, De Miranda LN (1994) Effect of vesicular-arbuscular mycorrhiza in the growth of wheat varieties with differing aluminum tolerance, in cerrado soil. R Bras Ci Solo 18:407–414

    CAS  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Article  CAS  Google Scholar 

  • Drzewiecka K, Mleczek M, Waskiewicz A, Golinski P (2012) Oxidative stress and phytoremediation. In: Ahmad P, Prasad MNV (eds.) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, LLC, pp. 425–449

    Chapter  Google Scholar 

  • Estaún V, Calvet C, Camprubí A (2010) Effect of differences among crop species and cultivars on the arbuscular mycorrhizal symbiosis. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Heidelberg, pp. 279–295

    Chapter  Google Scholar 

  • Etcheverría P (2009) Glomalin in evergreen forest associations, deciduous forest and a plantation of Pseudotsuga menziesii in the X Región, Chile. Ph. D Dissertation, Universidad de La Frontera

    Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R (2014) Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants. Mycorrhiza 24.3:197–208

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan QJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542

    Article  Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516

    Article  Google Scholar 

  • Fusconi A, Berta G (2012) Environmental stress and role of arbuscular mycorrhizal symbiosis. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp. 197–214

    Chapter  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp. (Pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    Article  CAS  Google Scholar 

  • Gavito M, Azón-Aguilar C (2012) Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agri Food Sci 21:2–11

    Google Scholar 

  • Gavito ME, Rouhier H, Olsson PA, Medina PA, Jakobsen I, Bago B, Azcón AC (2005) Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol 168:179–188

    Article  CAS  PubMed  Google Scholar 

  • Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013) Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric Water Manag 117:106–114

    Article  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glassman SI, Casper BB (2012) Biotic contexts alter metal sequestration and AMF effects on plant growth in soils polluted with heavy metals. Ecol 93:1550–1559

    Article  Google Scholar 

  • Gollotte A, Van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gong M, Tang M, Chen H, Zhang Q, Feng X (2013) Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forest 44:399–408

    Article  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  PubMed  Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Oenet Biol 42:130–140

    Article  CAS  Google Scholar 

  • González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007) GintMTl encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N (2010) GintABC1 encodes a putative ABC transprter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146

    Article  PubMed  CAS  Google Scholar 

  • Hajiboland R (2012) Effect of micronutrient deficiencies on plants stress responses. In: Ahmad P, Prasad MNV (eds.) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, LLC, pp. 283–329

    Chapter  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer, New York, pp. 301–354

    Chapter  Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in Plants. In. Miransari M (ed.) Use of microbes for the alleviation of soil stresses, Vol. 1, Springer Science+Business Media NY, pp. 139–159

    Chapter  Google Scholar 

  • Hasanuzzaman M, Fujita M, Islam MN, Ahamed KU, Nahar K (2009) Performance of four irrigated rice varieties under different levels of salinity stress. Int J Integr Biol 6:85–90

    Google Scholar 

  • Hasanuzzaman M, Gill SS, Fujita M (2013) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In. Tuteja N, Gill SS (eds.) Plant acclimation to environmental stress, Springer Science+Business Media NY, pp. 269–322

    Chapter  Google Scholar 

  • Allah EF, Alqarawi AA, El-Didamony G, Alwhibi M, Egamberdieva D, Ahmad P (2014) Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak J Bot 46:2003–2013

    Google Scholar 

  • Hatzig S, Kumar A, Neubert A, Schubert S (2010) PEP-carboxylase activity: a comparison of its role in a C4 and a C3 species under salt stress. J Agron Crop Sci 196:185–192

    Article  CAS  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JP (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  CAS  PubMed  Google Scholar 

  • Impa SM, Nadaradjan S, Jagadish SVK (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. In: Ahmad P, Prasad MNV (eds.), Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+ Business Media, LLC, pp. 131–147

    Chapter  Google Scholar 

  • IPCC (Intergovernmental Panel on Climatic Change) (2007) The physical science basis: summery for policymakers, IPCC WG1 4th Assessment Report.

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Janicka-Russak, M., Kabala, K., Wdowikowska, A., Klobus, G (2012) Response of plasma membrane H+-ATPase to low temperature in cucumber roots. J Plant Res 125:291–300

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Barea JM (2012) Arbuscular mycorrhiza -a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota, vol IX. Fungal Associations, 2nd edn. Springer-Verlag, Berlin, Heidelberg Fungal associations. Heidelberg, pp. 51–75

    Chapter  Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Letters 581:2237–2246

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: Approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds.) Plant acclimation to environmental stress, Springer Science+Business Media, LLC, pp. 359–401

    Chapter  Google Scholar 

  • Kapoor R, Sharma D, Bhatnagar AK. (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hortic 116:227–239

    Article  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hort 121:1–6

    Article  CAS  Google Scholar 

  • Kelly CN, Morton JB, Cumming JR (2005) Variation in aluminum resistance among arbuscular mycorrhizal fungi. Mycorrhiza 15:193–201

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11

    Article  CAS  Google Scholar 

  • Kirk A, Fox S, Entz M, Tenuta M (2008) Preliminary findings on the arbuscular mycorrhizal colonization of organic wheat. 16th IFOAM Organic World congress, Modena, Italy

    Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1990) Direct and indirect effects of VA mycorrhiza and rhizosphere microorganisms on mineral nutrient acquisition by maize (Zea mays L) in-a calcareous soil. New Phytol 116:637–645

    Article  CAS  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Rathore M, Ranganatha ARG (2013) Weeds as a source of genetic material for crop improvement under adverse conditions. In: Tuteja N, Gill SS (eds.) Plant acclimation to environmental stress, Springer Science+Business Media, NY, pp. 323–342

    Chapter  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BR, Muneer S, Avice JC, Jin Jung W, Kim TH (2012) Mycorrhizal colonisation and P-supplement effects on N uptake and N assimilation in perennial ryegrass under well-watered and drought-stressed conditions. Mycorrhiza 22:525–534

    Article  CAS  PubMed  Google Scholar 

  • Li T, Hu Y, Hao Z, Li H, Wang Y, Chen B (2013) First cloning and characterization of two functional aquaporin genes from an Arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  CAS  PubMed  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    Article  CAS  PubMed  Google Scholar 

  • Liu AR, Chen SC, Liu YY, Li YN, He CX (2011) Effect of AM fungi on leaf photosynthetic physiological parameters and antioxidant activities under low temperature. Acta Ecol Sin 31:3497–3503

    CAS  Google Scholar 

  • Liu ZL Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ (2013) Differences in the arbuscular mycorrhizal fungi improved rice resistance to low temperature at two N levels: Aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Ráez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Bécard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874

    Article  PubMed  CAS  Google Scholar 

  • López-Ráez JA, Verhage A, Fenández I, García JM, Azcón-Aguilar, C, Flors V, Pozo, MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Koltai H, Kapulnik Y (eds.), Arbuscular mycorrhizas: physiology and function. Springer, NY, pp. 169–190

    Chapter  Google Scholar 

  • Malekzadeh E, Alikhani AH, Savaghebi-Fioozabadi RG, Zarei M (2011) Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish J Agric Res 9:1213–1223

    Article  Google Scholar 

  • Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K (2010) Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46:151–156

    Article  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavmetals by canola (Brassica napus) and radish (Raphanus sativugrown on multicontaminated soil. Environ Pollut 132:21–27

    Article  CAS  PubMed  Google Scholar 

  • Martin, CA and JC Stutz (2004) Interactive effects of temperature and arbuscular mycorrhizal fungal treatments on growth, P uptake and root respiration of Capsicum annuum. Mycorrhiza 14:241–244

    Article  PubMed  Google Scholar 

  • Maurel C, Plassard C (2011) Aquaporins: for more than water at the plantfungus interface? New Phytol 190:815–817

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Review. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Moussa HR, Abdel-Aziz SM (2008) Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Aust J Crop Sci 1:31–36

    Google Scholar 

  • Muthukumar T, Bagyaraj DJ (2010) Use of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Proc Natl Acad Sci India Sect B Biol Sci 80:103–121

    CAS  Google Scholar 

  • Muthukumar T, Priyadharsini P, Uma E, Jaison S, Pandey RR (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Miransari M (ed.) Use of microbes for the alleviation of soil stresses, Vol. 1, Springer Science+Business Media NY, pp. 43–71

    Chapter  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Research review paper. Biotech Adv 32:429–448

    Article  Google Scholar 

  • Nogueira MA, Cardoso EJBN, Hampp R (2002) Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean. Plant Soil 246:1–10

    Article  CAS  Google Scholar 

  • Nogueira MA, Magelhaes GC, Cardoso EJBN (2004) Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J Plant Nutr 27:141–156

    Article  CAS  Google Scholar 

  • Nogueira MN, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284

    Article  CAS  Google Scholar 

  • Ogawa A, Yamauchi A (2006) Root osmotic adjustment under osmotic stress in maize seedlings. 2. Mode of accumulation of several solutes for osmotic adjustment in the root. Plant Prod Sci 9:39–46

    CAS  Google Scholar 

  • Ortas I, Ustuner O (2014) Determination of different growth media and various mycorrhizae species on citrus growth and nutrient uptake. Sci Hortic 166:84–90

    Article  CAS  Google Scholar 

  • Ouziad F, Wilde P, Schmelzer E, Hilderbrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186

    Article  CAS  Google Scholar 

  • Pagano MC (2014) Drought stress and mycorrhizal plants. In: Miransari M (ed.) Use of microbes for the alleviation of soil stresses, Springer Science+Business Media, NY pp. 97–110

    Chapter  Google Scholar 

  • Patakas A (2012) Abiotic stress-induced morphological and anatomical changes in plants. In: Ahmad P, Prasad MNV (eds.) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science+Business Media, LLC, pp. 21–39

    Chapter  Google Scholar 

  • Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trend Plant Sci 10:166–169

    Article  CAS  Google Scholar 

  • Plassard C, Fransson P (2009) Regulation of low molecular weight organic acid production in fungi. Fungal Biol Rev 23:30–39

    Article  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2007) A gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is up-regulated by drought stress in some mycorrhizal plants. Environ Exp Bot 60:251–256

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi -a review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Pregitzer KS, King JS (2005) Effect of soil temperature on nutrient uptake. In: Rad HB (ed.) Nutrient acquisition by plants: an Ecological perspective. Springer Verlag, Berlin, Heidelberg, pp. 277–310

    Chapter  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afric J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rapparini F, Llusià J, Peñuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua. Plant Biol 10:108–122

    Article  CAS  PubMed  Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed.) Use of microbes for the alleviation of soil stresses, Vol. 1, Springer Science+Business Media NY, pp. 21–42

    Chapter  Google Scholar 

  • Raziuddin, Farhatullah, Hassan G, Akmal M, Shah SS, Mohammed F, Shafi M, Bakht J, Zhou W (2011) Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pak J Bot 43:333–340

    CAS  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseaeinoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil quality. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rohyadi A (2008) Growth responses of external hyphae of arbuscular mycorrhizal fungi to acidic soil conditions and their effects on cowpea growth. Microbiol 2:22–26

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomataI behaviour and water use efficiency of arbuscuIar mycorrhizal plants. In: Koltai H, Kapulnik Y (eds), Arbuscular mycorrhizas: physiology and function. 2nd ed. Dordrecht, The NetherIands: Springer Science +Business Media B.V, pp. 239–256

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytol 171:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by Arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Ruíz-Sánchez M, Aroca R, Muñoz Y, Armada E, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  PubMed  CAS  Google Scholar 

  • Rymen B, Fiorani F, Kartal F, Vandepoele K, Inze D, Beemster GT (2007) Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol 143:1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Biochem 45:39–46

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: Potential for crop improvement under adverse conditions. In: Tuteja N, Gill SS (eds.) Plant acclimation to environmental stress, Springer Science+Business Media, NY, pp. 197–232

    Chapter  Google Scholar 

  • Schübler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Edinburgh and Kew: The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Seregin I, Shpigun L, Ivanov V (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–533

    Article  CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    Article  PubMed  Google Scholar 

  • Siqueira JO, Rocha WF, Oliveira E, Colozzi-Filho A (1990) The relationship between vesicular-arbuscular mycorrhiza and lime: Associated effects on the growth and nutrition of brachiaria grass (Brachiaria decumbens). Biol Fertil Soil 10:65–71

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smith FW, Rae AL, Hawkesford MJ (2000) Molecular mechanisms of phosphate and sulphate transport in plants. Biochem Biophys Acta 1465:236–245

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understating and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. San Diego: Academic Press

    Google Scholar 

  • Souza LA, Andrade SAL, Souza SCR, Schiavinato MA (2012) Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pbcontaminated soils. Int J Phytoremed 15:465–476

    Article  CAS  Google Scholar 

  • Sowinski P, Rudzinska-Langwald A, Adamczyk J, Kubica I, Fronk J (2005) Recovery of maize seedling growth, development and photosynthetic ef fi ciency after initial growth at low temperature. J Plant Physiol 162:67–80

    Article  CAS  PubMed  Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effects of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds.) Mycorrhizae in crop production. Haworth Food & Agricultural Products Press, Binghamton, NY, pp. 67–122

    Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrbiza 10:281–285

    Article  CAS  Google Scholar 

  • Suri VK, Choudhary AK, Chander G, Verma TS (2011) Influence of vesicular arbuscular mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus-deficient acid alfisol of western Himalayas. Commun Soil Sci Plant Anal 42:1177–1186

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2011) Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J Plant Nutr Soil Sci 174:283–291

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31

    Article  CAS  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    Article  CAS  Google Scholar 

  • Thakur P, Nayyar H (2013) Facing the cold stress by plants in the changing environment: sensing, signaling, and defending mechanisms. In: Tuteja N, Gill SS (eds.) Plant acclimation to environmental stress, Springer Science+Business Media NY, pp. 29–69

    Chapter  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert G, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    Article  CAS  PubMed  Google Scholar 

  • Usha K, Saxena A, Singh B (2004) Rhizosphere dynamics in fluenced by arbuscular mycorrhizal fungus (Glomus deserticola) and related changes in leaf nutrient status and yield of Kinnow mandarin [King (Citrus nobilis) × Willow Leaf (Citrus deliciosa)]. Aust J Agric Res 55:571–576

    Article  Google Scholar 

  • Vahedi A (2013) The investigation of arbuscular mycorrhizal fungi effect on growth and nutrients in Trifolium pretense in the multi metals contaminated soil. Int J Biol 5:71–78

    CAS  Google Scholar 

  • Lens P. Tabak H (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides.3.Influence of chemical speciation and bioavailability on contaminants remobilization bio-processes. Rev Environ Sci Biotechnol 4:185–212

    Article  CAS  Google Scholar 

  • Verma S, Dubey R (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chem Ecol 5:283–291

    Article  CAS  Google Scholar 

  • Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wahid A, Farooq M, Hussain I, Rasheed R, Galani S (2012) Responses and Management of Heat Stress in Plants. In: Ahmad P, Prasad MNV (eds.) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science+Business Media, LLC, pp. 135–157

    Chapter  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    Article  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens–a field case. Environ Pollut 147:248–255

    Article  CAS  PubMed  Google Scholar 

  • Wenzel H, Larsen HF, Clauson-Kaasj, Hoibye L, Jacobsen BN (2008) Weighing environmental advantages and disadvantages of advanced wastewater treatrnent of rnicro-pollutants using environmental life cycle assessrnent. Water Sci Technol 57:27–32

    Article  CAS  PubMed  Google Scholar 

  • Wright SF (2005) Management of arbuscular mycorrhizal fungi. In: Zobel RW, Wright SF (eds.) Roots and soil management: interactions between roots and the soil. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp. 183–197

    Google Scholar 

  • Wu QS, Zou YN (2010) Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci Hortic 125:289–293

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, He XH (2011) Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Sci Hortic 129:294–298

    Article  CAS  Google Scholar 

  • Xie X, Weng B, Cai B, Dong Y, Yan C (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake of Kandelia obovate (Sheue, Liu & Yong) seedlings in autoclaved soil. Appl Soil Ecol 75:162–171

    Article  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycine betaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L.seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 3:612–625

    Article  CAS  Google Scholar 

  • Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol Biochem 37:1569–1572

    Article  CAS  Google Scholar 

  • Yaseen T, Burni T, Hussain F (2012) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of chickpea (Cicer arietinum) varieties. Int J Agron Plant Prod 3:334–345

    Google Scholar 

  • Yooyongwech S, Phaukinsang N, Cha-Um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L.grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293

    Article  CAS  Google Scholar 

  • Zhang HH, Tang M, Chen H, Zheng C, Niu Z (2010) Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L., seedlings planting in soil with increasing lead concentrations. Eur J Soil Biol 46:306–311

    Article  Google Scholar 

  • Zhang YF, Feng G, Li XL (2003) The effect of arbuscular mycorrhizal fungi on the components and concentrations of organic acids in the exudates of mycorrhizal red clover. Acta Ecol Sin 23:30–37

    Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L.under drought stress. Plant Soil Environ 58:186–191

    CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010a). Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Acta Ecol Sin 21:470–475

  • Zhu XC, Song FB, Xu HW (2010b) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zou YN, Wu QS, Huang YM, Ni QD, He XH (2013) Mycorrhizal-Mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLOS One 8:1–8

    Google Scholar 

  • Źróbek-Sokolnik A (2012) Temperature stress and responses of plants. In: Ahmad P, Prasad MNV (eds.) Environmental adaptations and stress tolerance of plants in the era of climate change, Springer Science+Business Media, LLC, pp. 113–134

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arafat Abdel Hamed Abdel Latef, Naser A. Anjum or Parvaiz Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latef, A.A.H.A., Hashem, A., Rasool, S. et al. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J. Plant Biol. 59, 407–426 (2016). https://doi.org/10.1007/s12374-016-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0237-7

Keywords

Navigation