Skip to main content

Advertisement

Log in

Sugarcane Bagasse Adsorbents: Bibliometric Insights and the Influence of Chemical Treatment on Adsorption Performance in Aqueous Solution

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

This study was aimed at studying the research trends as well as the effect of chemical treatment on the adsorption capacity of sugarcane bagasse adsorbents in aqueous media. Drawing upon an expansive dataset spanning two decades and sourced from the Scopus database, it unveiled the temporal evolution of scholarly engagement, reflecting dynamic growth and shifting scholarly interests. With 1086 articles authored by 1060 co-authors hailing from 82 countries, the global influence of this research domain is strikingly evident. The intricate interplay between diverse chemical treatments and adsorption performance enhancement in aqueous solution was meticulously examined, encompassing acids, alkalis, oxidants, polymers, and surfactants. The mechanistic effects of these treatments emerged as a transformative strategy, often leading to significant improvements in adsorption performance, with enhancements even reaching up to 4000%. Nonetheless, isolated instances of reduced adsorption performance were also documented. This integrative analysis advances the understanding of sugarcane bagasse adsorbents as versatile and sustainable solutions poised to address complex environmental challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced from Xiong et al. (2019) with permission from Elsevier

Similar content being viewed by others

References

  • Adegoke, K.A., K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, and J. Conradie. 2022. Cellulose derivatives and cellulose-metal-organic frameworks for CO2 adsorption and separation. Journal of CO2 Utilization 64: 102163. https://doi.org/10.1016/j.jcou.2022.102163.

    Article  CAS  Google Scholar 

  • Adio, S.O., S.A. Ganiyu, M. Usman, I. Abdulazeez, and K. Alhooshani. 2020. Facile and efficient nitrogen modified porous carbon derived from sugarcane bagasse for CO2 capture: Experimental and DFT investigation of nitrogen atoms on carbon frameworks. Chemical Engineering Journal 382: 122964. https://doi.org/10.1016/j.cej.2019.122964.

    Article  CAS  Google Scholar 

  • Akpomie, K.G., K.A. Adegoke, K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, A.O. Adeola, K.O. Iwuozor, and J. Conradie. 2022. Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefinery 14: 1–29. https://doi.org/10.1007/s13399-022-03592-w.

    Article  CAS  Google Scholar 

  • Alam, G., I. Ihsanullah, M. Naushad, and M. Sillanpää. 2022. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chemical Engineering Journal 427: 130011. https://doi.org/10.1016/j.cej.2021.130011.

    Article  CAS  Google Scholar 

  • Al-Mokhalelati, K., I. Al-Bakri, and N. Al Shibeh Al Wattar. 2021. Adsorption of methylene blue onto sugarcane bagasse-based adsorbent materials. Journal of Physical Organic Chemistry 34 (7): e4193. https://doi.org/10.1002/poc.4193.

    Article  CAS  Google Scholar 

  • Amaku, J.F., C. Olisah, A.O. Adeola, K.O. Iwuozor, K.G. Akpomie, J. Conradie, K.A. Adegoke, K.O. Oyedotun, and J.O. Ighaloi. 2022. Multiwalled carbon nanotubes versus metal-organic frameworks: A review of their hexavalent chromium adsorption performance. International Journal of Environmental Analytical Chemistry 103: 1–23. https://doi.org/10.1080/03067319.2022.2137411.

    Article  CAS  Google Scholar 

  • Amalina, F., A.S. Abd Razak, S. Krishnan, A. Zularisam, and M. Nasrullah. 2022. The effects of chemical modification on adsorbent performance on water and wastewater treatment—A review. Bioresource Technology Reports 20: 101259. https://doi.org/10.1016/j.biteb.2022.101259.

    Article  CAS  Google Scholar 

  • Aniagor, C.O., C.A. Igwegbe, K.O. Iwuozor, F.U. Iwuchukwu, S. Eshiemogie, M.C. Menkiti, and J.O. Ighalo. 2022. CuO nanoparticles as modifiers for membranes: A review of performance for water treatment. Materials Today Communications 32: 103896. https://doi.org/10.1016/j.mtcomm.2022.103896.

    Article  CAS  Google Scholar 

  • Aristovnik, A., D. Ravšelj, and L. Umek. 2020. A bibliometric analysis of COVID-19 across science and social science research landscape. Sustainability 12 (21): 9132. https://doi.org/10.3390/su12219132.

    Article  CAS  Google Scholar 

  • Bagotia, N., A.K. Sharma, and S. Kumar. 2021. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 268: 129309. https://doi.org/10.1016/j.chemosphere.2020.129309.

    Article  CAS  PubMed  Google Scholar 

  • Bartos, A., J. Anggono, Á.E. Farkas, D. Kun, F.E. Soetaredjo, J. Móczó, H. Purwaningsih, and B. Pukánszky. 2020. Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing 88: 106549. https://doi.org/10.1016/j.polymertesting.2020.106549.

    Article  CAS  Google Scholar 

  • Belhaj, A.F., K.A. Elraies, S.M. Mahmood, N.N. Zulkifli, S. Akbari, and O.S. Hussien. 2020. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: A review. Journal of Petroleum Exploration and Production Technology 10: 125–137.

    Article  CAS  Google Scholar 

  • Bhatti, H.N., S. Sadaf, M. Naz, M. Iqbal, Y. Safa, H. Ain, S. Nawaz, and A. Nazir. 2021. Enhanced adsorption of Foron Black RD 3GRN dye onto sugarcane bagasse biomass and Na-alginate composite. Desalination Water Treat 216: 423–435.

    Article  CAS  Google Scholar 

  • Bhavya, G., S.A. Belorkar, R. Mythili, N. Geetha, H.S. Shetty, S.S. Udikeri, and S. Jogaiah. 2021. Remediation of emerging environmental pollutants: A review based on advances in the uses of eco-friendly biofabricated nanomaterials. Chemosphere 275: 129975.

    Article  CAS  PubMed  Google Scholar 

  • Borrego, M., M.J. Foster, and J.E. Froyd. 2014. Systematic literature reviews in engineering education and other developing interdisciplinary fields. Journal of Engineering Education 103 (1): 45–76.

    Article  Google Scholar 

  • Chaudhary, M., S. Kushwaha, S. Chaudhary, I. Tyagi, M.H. Dehghani, B. Stephen Inbaraj, J. Goscianska, and M. Sharma. 2022. Studies on the removal of phenol and nitrophenols from water by activated carbon developed from demineralized kraft lignin. Agronomy 12 (10): 2564.

    Article  CAS  Google Scholar 

  • Chemmangattuvalappil, N., D.K. Ng, L.Y. Ng, J. Ooi, J.W. Chong, and M.R. Eden. 2020. A review of process systems engineering (PSE) tools for the design of ionic liquids and integrated biorefineries. Processes 8 (12): 1678. https://doi.org/10.3390/pr8121678.

    Article  CAS  Google Scholar 

  • Chin, S.C., K.F. Tee, F.S. Tong, H.R. Ong, and J. Gimbun. 2020. Thermal and mechanical properties of bamboo fiber reinforced composites. Materials Today Communications 23: 100876.

    Article  CAS  Google Scholar 

  • Cruz, G., P.A. Santiago, C.E. Braz, P. Seleghim, and P.M. Crnkovic. 2018. Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. Journal of Thermal Analysis and Calorimetry 132: 1039–1053.

    Article  CAS  Google Scholar 

  • Deans, C.A., G.A. Sword, P.A. Lenhart, E. Burkness, W.D. Hutchison, and S.T. Behmer. 2018. Quantifying plant soluble protein and digestible carbohydrate content, using corn (Zea mays) as an exemplar. Journal of Visualized Experiments 138: e58164. https://doi.org/10.3791/58164.

    Article  CAS  Google Scholar 

  • Egbemhenghe, A.U., T. Ojeyemi, K.O. Iwuozor, E.C. Emenike, T.I. Ogunsanya, S.U. Anidiobi, and A.G. Adeniyi. 2023. Revolutionizing water treatment, conservation, and management: Harnessing the power of AI-driven ChatGPT solutions. Environmental Challenges 13: 100782. https://doi.org/10.1016/j.envc.2023.100782.

    Article  Google Scholar 

  • Ejaz, U., S. Muhammad, F.I. Ali, I.A. Hashmi, and M. Sohail. 2019. Methyltrioctylammonium chloride mediated removal of lignin from sugarcane bagasse for themostable cellulase production. International Journal of Biological Macromolecules 140: 1064–1072.

    Article  CAS  PubMed  Google Scholar 

  • El-Dean, A.M., E.Y. Hashem, M.M. Ahmed, and S.M. Hussain. 2020. Tartaric acid grafted sugarcane bagasse for removal of chromium (VI) from aqueous solutions. Egyptian Sugar Journal 14: 79–93.

    Article  Google Scholar 

  • Emenike, E.C., A.G. Adeniyi, P.E. Omuku, K.C. Okwu, and K.O. Iwuozor. 2022. Recent advances in nano-adsorbents for the sequestration of copper from water. Journal of Water Process Engineering 47: 102715. https://doi.org/10.1016/j.jwpe.2022.102715.

    Article  Google Scholar 

  • Emenike, E.C., A.G. Adeniyi, K.O. Iwuozor, C.J. Okorie, A.U. Egbemhenghe, P.E. Omuku, K.C. Okwu, and O.D. Saliu. 2023. A critical review on the removal of mercury (Hg2+) from aqueous solution using nanoadsorbents. Environmental Nanotechnology, Monitoring & Management 20: 100816. https://doi.org/10.1016/j.enmm.2023.100816.

    Article  CAS  Google Scholar 

  • Ewuzie, U., O.D. Saliu, K. Dulta, S. Ogunniyi, A.O. Bajeh, K.O. Iwuozor, and J.O. Ighalo. 2022. A review on treatment technologies for printing and dyeing wastewater (PDW). Journal of Water Process Engineering 50: 103273.

    Article  Google Scholar 

  • Farahani, M., M. Kashisaz, and S. Abdullah. 2015. Adsorption of safranin O from aqueous phase using sugarcane bagasse. International Journal of Ecological Science and Environmental Engineering 2: 17–29.

    Google Scholar 

  • Fasoto, T.S., J.O. Arawande, and A. Akinnusotu. 2014. Adsorption of zinc and chromium ions from aqueous solution onto sugarcane bagasse. International Journal of Modern Chemistry 6 (1): 28–47.

    Google Scholar 

  • Ge, M., M. Du, L. Zheng, B. Wang, X. Zhou, Z. Jia, G. Hu, and S.J. Alam. 2017. A maleic anhydride grafted sugarcane bagasse adsorbent and its performance on the removal of methylene blue from related wastewater. Materials Chemistry and Physics 192: 147–155.

    Article  CAS  Google Scholar 

  • Ghimire, K.N., D. Wagle, and S.L. Shrestha. 2013. Adsorption behaviour of chromium (VI) onto surface modified sugarcane waste. Tribhuvan University Journal 28 (1–2): 113–122.

    Article  Google Scholar 

  • Ghosh, S., A. Ray, and N. Pramanik. 2020. Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophysical Chemistry 265: 106429.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, M.G., L.V.A. Gurgel, M.A. Baffi, and D. Pasquini. 2020. Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renewable Energy 157: 332–341.

    Article  CAS  Google Scholar 

  • Gómora-Hernández, J.C., A. Tecante, M. del Carmen Carreño-de-León, N. Flores-Álamo, and S. Ventura-Cruz. 2023. Preparation of porous microcrystalline cellulose from mezcal industry agave bagasse by low reagent loading sequential chemical treatment. Cellulose 30: 2067–2084. https://doi.org/10.1007/s10570-022-05022-6.

    Article  CAS  Google Scholar 

  • Gupta, M., H. Gupta, and D. Kharat. 2018. Adsorption of Cu (II) by low cost adsorbents and the cost analysis. Environmental Technology & Innovation 10: 91–101.

    Article  Google Scholar 

  • Harish, V., M. Ansari, D. Tewari, A.B. Yadav, N. Sharma, S. Bawarig, M.-L. García-Betancourt, A. Karatutlu, M. Bechelany, and A. Barhoum. 2023. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. Journal of the Taiwan Institute of Chemical Engineers 149: 105010. https://doi.org/10.1016/j.jtice.2023.105010.

    Article  CAS  Google Scholar 

  • Huang, C., X. Jiang, X. Shen, J. Hu, W. Tang, X. Wu, A. Ragauskas, H. Jameel, X. Meng, and Q. Yong. 2022. Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renewable and Sustainable Energy Reviews 154: 111822. https://doi.org/10.1016/j.rser.2021.111822.

    Article  CAS  Google Scholar 

  • Huntley, C.J., K.D. Crews, M.A. Abdalla, A.E. Russell, and M.L. Curry. 2015. Influence of strong acid hydrolysis processing on the thermal stability and crystallinity of cellulose isolated from wheat straw. International Journal of Chemical Engineering 2015: 658163. https://doi.org/10.1155/2015/658163.

    Article  CAS  Google Scholar 

  • Ighalo, J.O., F.O. Omoarukhe, V.E. Ojukwu, K.O. Iwuozor, and C.A. Igwegbe. 2022a. Cost of Adsorbent Preparation and Usage in Wastewater Treatment: A Review. Cleaner Chemical Engineering, 3: 100042. https://doi.org/10.1016/j.clce.2022.100042.

  • Ighalo, J.O., B. Yao, Y. Zhou, K.O. Iwuozor, I. Anastopoulos, C.O. Aniagor, and S. Rangabhashiyam. 2022b. Utilization of avocado (Persea Americana) adsorbents for the elimination of pollutants from water: a review. In Biomass-Derived Materials for Environmental Applications, 333–348. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-323-91914-2.00016-7.

  • Ighalo, J.O., Y. Zhou, Y. Zhou, C.A. Igwegbe, I. Anastopoulos, M.A. Raji, and K.O. Iwuozor. 2022c. A review of pine-based adsorbents for the adsorption of dyes. In Biomass-Derived Materials for Environmental Applications, 319–332. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-323-91914-2.00013-1.

  • Igwegbe, C.A., J.O. Ighalo, K.O. Iwuozor, O.D. Onukwuli, P.U. Okoye, and A.E. Al-Rawajfeh. 2022. Prediction and optimisation of coagulation-flocculation process for turbidity removal from aquaculture effluent using Garcinia kola extract: Response surface and artificial neural network methods. Cleaner Chemical Engineering 4: 100076.

    Article  Google Scholar 

  • Igwegbe, C.A., J.O. Ighalo, K.O. Iwuozor, O.D. Onukwuli, and A.G. Adeniyi. 2023. Response Surface Modelling and Optimisation of Activated Carbons Adsorption of Pollutants from Textile Wastewater. In Handbook of Porous Carbon Materials, 571–593. Singapore: Springer. https://doi.org/10.1007/978-981-19-7188-4_21.

  • Ivanovska, A., D. Cerovic, S. Maletic, I. Jankovic Castvan, K. Asanovic, and M. Kostic. 2019. Influence of the alkali treatment on the sorption and dielectric properties of woven jute fabric. Cellulose 26: 5133–5146.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O. 2019. Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Advanced Journal of Chemistry-Section A 2 (2): 105–127.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., J.O. Ighalo, E.C. Emenike, C.A. Igwegbe, and A.G. Adeniyi. 2021a. Do adsorbent pore size and specific surface area affect the kinetics of methyl orange aqueous phase adsorption? Journal of Chemistry Letters 2 (4): 188–198. https://doi.org/10.22034/jchemlett.2022.327407.1048.

    Article  Google Scholar 

  • Iwuozor, K.O., J.O. Ighalo, E.C. Emenike, L.A. Ogunfowora, and C.A. Igwegbe. 2021b. Adsorption of methyl orange: A review on adsorbent performance. Current Research in Green and Sustainable Chemistry 4: 100179. https://doi.org/10.1016/j.crgsc.2021.100179.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., K.G. Akpomie, J. Conradie, K.A. Adegoke, K.O. Oyedotun, J.O. Ighalo, J.F. Amaku, C. Olisah, and A.O. Adeola. 2022a. Aqueous phase adsorption of aromatic organoarsenic compounds: A review. Journal of Water Process Engineering 49: 103059.

    Article  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, J.O. Ighalo, S. Eshiemogie, P.E. Omuku, and A.G. Adeniyi. 2022b. Valorization of sugar industry’s by-products: A perspective. Sugar Tech 24: 1052–1078. https://doi.org/10.1007/s12355-022-01143-1.

    Article  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, J.O. Ighalo, F.O. Omoarukhe, P.E. Omuku, and A.G. Adeniyi. 2022c. A review on the thermochemical conversion of sugarcane bagasse into biochar. Cleaner Materials 6: 100162. https://doi.org/10.1016/j.clema.2022.100162.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., L.A. Ogunfowora, and I.P. Oyekunle. 2022d. Review on sugarcane-mediated nanoparticle synthesis: A green approach. Sugar Tech 24: 1186–1197. https://doi.org/10.1007/s12355-021-01038-7.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., I.P. Oyekunle, E.C. Emenike, S.M. Okoye-Anigbogu, E.M. Ibitogbe, O. Elemile, J.O. Ighalo, and A.G. Adeniyi. 2022e. An overview of equilibrium, kinetic and thermodynamic studies for the sequestration of Maxilon dyes. Cleaner Materials 6: 100148. https://doi.org/10.1016/j.clema.2022.100148.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., I.P. Oyekunle, I.O. Oladunjoye, E.M. Ibitogbe, and T.S. Olorunfemi. 2022f. A review on the mitigation of heavy metals from aqueous solution using sugarcane bagasse. Sugar Tech 24: 1167–1185. https://doi.org/10.1007/s12355-021-01051-w.

    Article  CAS  Google Scholar 

  • Iwuozor, K., E. Emenike, F. Gbadamosi, J. Ighalo, G. Umenweke, F. Iwuchukwu, C. Nwakire, and C. Igwegbe. 2023a. Adsorption of organophosphate pesticides from aqueous solution: A review of recent advances. International Journal of Environmental Science and Technology 20: 5845–5894. https://doi.org/10.1007/s13762-022-04410-6.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., A.G. Adeniyi, E.C. Emenike, T. Ojeyemi, A.U. Egbemhenghe, C.J. Okorie, B.D. Ayoku, and O.D. Saliu. 2023b. Prospects and challenges of utilizing sugarcane bagasse as a bio-coagulant precursor for water treatment. Biotechnology Reports 39: e00805. https://doi.org/10.1016/j.btre.2023.e00805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwuozor, K.O., A.G. Adeniyi, E.C. Emenike, B.O. Olaniyi, V.U. Anyanwu, J.O. Bamigbola, and H.T. Ojo. 2023c. Adsorption technology in the sugar industry: Current status and future perspectives. Sugar Tech 25: 1005–1013. https://doi.org/10.1007/s12355-023-01272-1.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., E.C. Emenike, M. Abdulkadir, S. Ogunniyi, and A.G. Adeniyi. 2023d. Effect of salt modification on biochar obtained from the thermochemical conversion of sugarcane bagasse. Sugar Tech 25: 223–233. https://doi.org/10.1007/s12355-022-01166-8.

    Article  CAS  Google Scholar 

  • Iwuozor, K.O., C.T. Umeh, S.S. Emmanuel, E.C. Emenike, A.U. Egbemhenghe, O.T. Ore, T.T. Micheal, F.O. Omoarukhe, P.A. Sagboye, and V.E. Ojukwu. 2023e. A comprehensive review on the sequestration of dyes from aqueous media using maize-/corn-based adsorbents. Water Practice & Technology 18 (12): 1–20. https://doi.org/10.2166/wpt.2023.214.

    Article  Google Scholar 

  • Jun, Z., U.A. Franca, and K.O. Iwuozor. 2023. Relationship between agricultural production, energy consumption, and climate change in Nigeria. In Climate Change Impacts on Nigeria: Environment and Sustainable Development, pp. 563–580. Singapore: Springer. https://doi.org/10.1007/978-3-031-21007-5_27.

  • Jung, Y.H., and K.H. Kim. 2015. Acidic pretreatment. In Pretreatment of biomass: Processes and Technologies, 27–50. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-800080-9.00003-7.

  • Kadam, A.A., H.S. Lade, S.M. Patil, and S.P. Govindwar. 2013. Low cost CaCl2 pretreatment of sugarcane bagasse for enhancement of textile dyes adsorption and subsequent biodegradation of adsorbed dyes under solid state fermentation. Bioresource Technology 132: 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Kang, L.-L., Y.-N. Zeng, Y.-T. Wang, J.-G. Li, F.-P. Wang, Y.-J. Wang, Q. Yu, X.-M. Wang, R. Ji, and D. Gao. 2022. Removal of pollutants from wastewater using coffee waste as adsorbent: A review. Journal of Water Process Engineering 49: 103178.

    Article  Google Scholar 

  • Kumar, A., V. Kumar, and B. Singh. 2021. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules 169: 564–582. https://doi.org/10.1016/j.ijbiomac.2020.12.175.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, P., S.K. Kansal, and S. Elumalai. 2021. Synergistic action of alkalis improve the quality hemicellulose extraction from sugarcane bagasse for the production of xylooligosaccharides. Waste and Biomass Valorization 12: 3147–3159.

    Article  CAS  Google Scholar 

  • Latip, N., A. Sofian, M. Ali, S. Ismail, and D. Idris. 2019. Structural and morphological studies on alkaline pre-treatment of oil palm empty fruit bunch (OPEFB) fiber for composite production. Materials Today: Proceedings 17: 1105–1111.

    CAS  Google Scholar 

  • Lee, H., S.B.A. Hamid, and S. Zain. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal 2014: 631013. https://doi.org/10.1155/2014/631013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, C., C. Wang, W. Chen, M. He, and B. Huang. 2020. Polyaniline@ magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: Removal efficacy and mechanisms. Science of the Total Environment 733: 139316.

    Article  CAS  PubMed  Google Scholar 

  • Lin, D., Y. Fu, X. Li, L. Wang, M. Hou, D. Hu, Q. Li, Z. Zhang, C. Xu, and S. Qiu. 2022. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. Journal of Hazardous Materials 440: 129722.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., H. He, X. Peng, B. Huang, and J. Li. 2019. Three-dimensional printing of poly (lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies 30 (4): 910–922.

    Article  CAS  Google Scholar 

  • Lou, Z., Q. Wang, W. Sun, J. Liu, H. Yan, H. Han, H. Bian, and Y. Li. 2022. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability. Chemical Engineering Journal 430: 133178.

    Article  CAS  Google Scholar 

  • Luan, P., J. Liao, L. Chen, Y. Kuang, X. Zhang, Y. Zhang, Y. Zhu, Y. Dai, L. Mo, and J. Li. 2022. Facile and sustainable modification for improving the adsorption ability of sugarcane bagasse towards cationic organic pollutants. Biomass Conversion and Biorefinery 14: 1–16. https://doi.org/10.1007/s13399-022-02551-9.

    Article  CAS  Google Scholar 

  • Ly, H.T.Y., H.T.K. Dieu, and T.M.T. Sang. 2018. Chemically modified sugarcane bagasse as a biosorbent for dye removal from aqueous solution. VNUHCM Journal of Natural Sciences 2 (6): 175–181.

    Google Scholar 

  • Mahmood-ul-Hassan, M., V. Suthar, E. Rafique, R. Ahmad, and M. Yasin. 2015. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw. Environmental Monitoring and Assessment 187: 470. https://doi.org/10.1007/s10661-015-4692-2.

    Article  CAS  PubMed  Google Scholar 

  • Maisonobe, M. 2022. The future of urban models in the big data and AI era: A bibliometric analysis (2000–2019). AI & SOCIETY 37: 177–194. https://doi.org/10.1007/s00146-021-01166-4.

    Article  Google Scholar 

  • Malá, Z., and P. Gebauer. 2018. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range. Analytica Chimica Acta 998: 67–74.

    Article  PubMed  Google Scholar 

  • Malek, N., N. Sihat, M.A. Khalifa, A.A. Kamaru, N. Jani, and N. Sani. 2014. Adsorption of acid orange 7 by cetylpyridinium bromide modified sugarcane bagasse. Journal of Technology 78 (1–2): 97–103.

    Google Scholar 

  • Mandal, A., N. Singh, and T. Purakayastha. 2017. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Science of the Total Environment 577: 376–385.

    Article  CAS  PubMed  Google Scholar 

  • Manh, K.N., T.H. Minh, T.P. Thi, and B. Van der Bruggen. 2019. Performance comparison of chemically modified sugarcane bagasse for removing Cd (II) in water environment. Journal of Renewable Materials 7 (5): 415–428.

    Article  Google Scholar 

  • Maroto-Valer, M.M., I. Dranca, T. Lupascu, and R. Nastas. 2004. Effect of adsorbate polarity on thermodesorption profiles from oxidized and metal-impregnated activated carbons. Carbon 42 (12–13): 2655–2659.

    Article  CAS  Google Scholar 

  • Martín-Lara, M.Á., I.L.R. Rico, and I.d.l.C.A. Vicente, G.B. García, and M.C. de Hoces. 2010. Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination 256 (1–3): 58–63.

    Article  Google Scholar 

  • Mennah-Govela, Y.A., and G.M. Bornhorst. 2021. Food buffering capacity: Quantification methods and its importance in digestion and health. Food & Function 12 (2): 543–563.

    Article  CAS  Google Scholar 

  • Milani, P.A., K.B. Debs, G. Labuto, and E.N.V.M. Carrilho. 2018. Agricultural solid waste for sorption of metal ions: Part I—characterization and use of lettuce roots and sugarcane bagasse for Cu (II), Fe (II), Zn (II), and Mn (II) sorption from aqueous medium. Environmental Science and Pollution Research 25: 35895–35905.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, N.B., N. Ngadi, N.S. Lani, and R. Rahman. 2017. Polyethylenimine modified sugarcane bagasse adsorbent for methyl orange dye removal. Chemical Engineering Transactions 56: 103–108.

    Google Scholar 

  • Mohammed, K., K.O. Iwuozor, V.U. Anyanwu, and B.O. Olaniyi. 2023. Sugar Dust explosion in the sugar industry: Case studies and prevention strategies. Sugar Tech. https://doi.org/10.1007/s12355-023-01307-7.

  • Mpatani, F.M., A.A. Aryee, A.N. Kani, Q. Guo, E. Dovi, L. Qu, Z. Li, and R. Han. 2020. Uptake of micropollutant-bisphenol A, methylene blue and neutral red onto a novel bagasse-β-cyclodextrin polymer by adsorption process. Chemosphere 259: 127439.

    Article  CAS  PubMed  Google Scholar 

  • Ngah, W.W., and M.M. Hanafiah. 2008. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology 99 (10): 3935–3948.

    Article  Google Scholar 

  • Noreen, S., and H.N. Bhatti. 2014. Fitting of equilibrium and kinetic data for the removal of Novacron Orange P-2R by sugarcane bagasse. Journal of Industrial and Engineering Chemistry 20 (4): 1684–1692.

    Article  CAS  Google Scholar 

  • Ogunlalu, O., I.P. Oyekunle, K.O. Iwuozor, A.D. Aderibigbe, and E.C. Emenike. 2021. Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents. Current Research in Green and Sustainable Chemistry 4: 18. https://doi.org/10.1016/j.crgsc.2021.100188.

    Article  CAS  Google Scholar 

  • Ohale, P.E., C.A. Igwegbe, K.O. Iwuozor, E.C. Emenike, C.C. Obi, and A. Białowiec. 2023. A review of the adsorption method for norfloxacin reduction from aqueous media. MethodsX 10: 102180. https://doi.org/10.1016/j.mex.2023.102180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olisah, C., A.O. Adeola, K.O. Iwuozor, K. Akopmie, J. Conradie, K.A. Adegoke, K.O. Oyedotun, J.O. Ighalo, and J.F. Amaku. 2022. A bibliometric analysis of pre-and post-Stockholm Convention research publications on the Dirty Dozen Chemicals (DDCs) in the African environment. Chemosphere 308: 136371. https://doi.org/10.1016/j.chemosphere.2022.136371.

    Article  CAS  PubMed  Google Scholar 

  • Omoleye, W.S., O.B. Fawole, K. Affinnih, A.T. Aborode, E.C. Emenike, and K.O. Iwuozor. 2023. Bioremediation of Asa River Sediment Using Agricultural By-Products. In Land Remediation and Management: Bioengineering Strategies, 295–330. Singapore: Springer. https://doi.org/10.1007/978-981-99-4221-3_13.

  • Pan, Y., X. Shi, P. Cai, T. Guo, Z. Tong, and H. Xiao. 2018. Dye removal from single and binary systems using gel-like bioadsorbent based on functional-modified cellulose. Cellulose 25: 2559–2575.

    Article  CAS  Google Scholar 

  • Peng, X., Z. Wu, and Z. Li. 2020. A bowl-shaped biosorbent derived from sugarcane bagasse lignin for cadmium ion adsorption. Cellulose 27: 8757–8768. https://doi.org/10.1007/s10570-020-03376-3.

    Article  CAS  Google Scholar 

  • Pham, T.T., T.H. Dinh, M.K. Nguyen, and B. Van der Bruggen. 2016. Enhancing the adsorption capacity of copper in aqueous solution by citric acid modified sugarcane bagasse. Journal of Vietnamese Environment 8 (3): 200–205.

    Article  Google Scholar 

  • Praipipat, P., P. Ngamsurach, and A. Sanghuayprai. 2023. Modification of sugarcane bagasse with iron (III) oxide-hydroxide to improve its adsorption property for removing lead (II) ions. Scientific Reports 13 (1): 1467. https://doi.org/10.1038/s41598-023-28654-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabelo, S.C., L.B.B. de Paiva, T.C. Pin, L.F.R. Pinto, L.P. Tovar, and P.Y.S. Nakasu. 2020. Chemical and energy potential of sugarcane. In Sugarcane biorefinery, technology and perspectives, 141–163. Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-814236-3.00008-1.

  • Rachna, K., A. Agarwal, and N. Singh. 2019. Removal of victoria blue-84 dye from aqueous solution by zinc sulphate activated sugarcane bagasse. Journal of Scientific & Industrial Research 78: 307–311.

    CAS  Google Scholar 

  • Ramezani, M., Z. Mohd Ripin, T. Pasang, and C.-P. Jiang. 2023. Surface engineering of metals: Techniques. Characterizations and Applications. Metals 13 (7): 1299. https://doi.org/10.3390/met13071299.

    Article  CAS  Google Scholar 

  • Remor, P., J. Bastos, J. Alino, L. Frare, P. Kaparaju, and T. Edwiges. 2022. Optimization of chemical solution concentration and exposure time in the alkaline pretreatment applied to sugarcane bagasse for methane production. Environmental Technology 44 (19): 2843–2855. https://doi.org/10.1080/09593330.2022.2046645.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., W. Kong, and R. Sun. 2014. Preparation of sugarcane bagasse/poly (acrylic acid-co-acrylamide) hydrogels and their application. BioResources 9 (2): 3290–3303.

    Article  Google Scholar 

  • Rodríguez-Mosqueda, R., E.A. Bramer, and G. Brem. 2018. CO2 capture from ambient air using hydrated Na2CO3 supported on activated carbon honeycombs with application to CO2 enrichment in greenhouses. Chemical Engineering Science 189: 114–122.

    Article  Google Scholar 

  • Rosu, C., S.H. Pang, A.R. Sujan, M.A. Sakwa-Novak, E.W. Ping, and C.W. Jones. 2020. Effect of extended aging and oxidation on linear poly (propylenimine)-mesoporous silica composites for CO2 capture from simulated air and flue gas streams. ACS Applied Materials & Interfaces 12 (34): 38085–38097.

    Article  CAS  Google Scholar 

  • Sadaf, S., H.N. Bhatti, S. Ali, and K.-U. Rehman. 2014a. Removal of Indosol Turquoise FBL dye from aqueous solution by bagasse, a low cost agricultural waste: Batch and column study. Desalination and Water Treatment 52 (1–3): 184–198.

    Article  CAS  Google Scholar 

  • Sadaf, S., H.N. Bhatti, S. Nausheen, and S. Noreen. 2014b. Potential use of low-cost lignocellulosic waste for the removal of direct violet 51 from aqueous solution: Equilibrium and breakthrough studies. Archives of Environmental Contamination and Toxicology 66: 557–571.

    Article  CAS  PubMed  Google Scholar 

  • Santos, V.C.G.D., and A.d.P.A. Salvado, D.C. Dragunski, D.N.C. Peraro, C.R.T. Tarley, and J. Caetano. 2012. Highly improved chromium (III) uptake capacity in modified sugarcane bagasse using different chemical treatments. Química Nova 35: 1606–1611.

    Article  Google Scholar 

  • Santos, V.G., C.A. de Toledo Gomes, D.C. Dragunski, L.D. Koslowski, and K. Lunelli. 2019. Removal of metals ions from aqueous solution using modified sugarcane bagasse. Revista Virtual De Química 11 (4): 1289–1301.

    Article  Google Scholar 

  • Shabbirahmed, A.M., D. Haldar, P. Dey, A.K. Patel, R.R. Singhania, C.-D. Dong, and M.K. Purkait. 2022. Sugarcane bagasse into value-added products: A review. Environmental Science and Pollution Research 29 (42): 62785–62806.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, G., S. Sharma, A. Kumar, C.W. Lai, M. Naushad, J. Iqbal, and F.J. Stadler. 2022. Activated carbon as superadsorbent and sustainable material for diverse applications. Adsorption Science & Technology 2022: 4184809. https://doi.org/10.1155/2022/4184809.

    Article  CAS  Google Scholar 

  • Singh, S., V. Kumar, S. Datta, D.S. Dhanjal, K. Sharma, J. Samuel, and J. Singh. 2020. Current advancement and future prospect of biosorbents for bioremediation. Science of the Total Environment 709: 135895.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, A., B. Gupta, A. Majumder, A.K. Gupta, and S.K. Nimbhorkar. 2021. A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants. Journal of Environmental Chemical Engineering 9 (5): 106177.

    Article  CAS  Google Scholar 

  • Sultana, M., M.H. Rownok, M. Sabrin, M.H. Rahaman, and S.N. Alam. 2022. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Engineering and Technology 6: 100382. https://doi.org/10.1016/j.clet.2021.100382.

    Article  Google Scholar 

  • Umeh, C.T., A.B. Akinyele, N.H. Okoye, S.S. Emmanuel, K.O. Iwuozor, I.P. Oyekunle, J.O. Ocheje, and J.O. Ighalo. 2023a. Recent approach in the application of nanoadsorbents for malachite green (MG) dye uptake from contaminated water: A critical review. Environmental Nanotechnology, Monitoring & Management 20: 100891. https://doi.org/10.1016/j.enmm.2023.100891.

    Article  CAS  Google Scholar 

  • Umeh, C.T., J.K. Nduka, O.K. Iwuozor, O.D. Omokpariola, K. Dulta, S.C. Ezeh, and R.N. Emeka. 2023b. Adsorption modelling on the removal of ciprofloxacin antibiotic from aqueous solution by acid-modified corn cob. International Journal of Environmental Analytical Chemistry 104: 1–26. https://doi.org/10.1080/03067319.2023.2263383.

    Article  CAS  Google Scholar 

  • Utomo, H.D., R.Y.N. Phoon, Z. Shen, L.H. Ng, and Z.B. Lim. 2015. Removal of methylene blue using chemically modified sugarcane bagasse. Natural Resources 6 (4): 209–220. https://doi.org/10.4236/nr.2015.64019.

    Article  Google Scholar 

  • Vaz, F.L., J. da Rocha Lins, B.R.A. Alencar, Í.B.S. de Abreu, E.E. Vidal, E. Ribeiro, and E.V.d.S.B. Sampaio, R.S.C. Menezes, and E.D. Dutra. 2021. Chemical pretreatment of sugarcane bagasse with liquid fraction recycling. Renewable Energy 174: 666–673.

    Article  CAS  Google Scholar 

  • Wang, S.-N., P. Li, J.-J. Gu, H. Liang, and J.-H. Wu. 2018. Carboxylate-functionalized sugarcane bagasse as an effective and renewable adsorbent to remove methylene blue. Water Science and Technology 2017 (1): 300–309.

    Article  Google Scholar 

  • Xing, Y., and D. Deng. 2009. Enhanced adsorption of malachite green by EDTAD-modified sugarcane bagasse. Separation Science and Technology 44 (9): 2117–2131.

    Article  CAS  Google Scholar 

  • Xing, Y., and G. Wang. 2009. Poly (methacrylic acid)-modified sugarcane bagasse for enhanced adsorption of cationic dye. Environmental Technology 30 (6): 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, W.-L., J. Zhang, J.-X. Yu, and R.-A. Chi. 2019. Competitive adsorption behavior and mechanism for Pb2+ selective removal from aqueous solution on phosphoric acid modified sugarcane bagasse fixed-bed column. Process Safety and Environmental Protection 124: 75–83.

    Article  CAS  Google Scholar 

  • Xu, L., S.-J. Zhang, C. Zhong, B.-Z. Li, and Y.-J. Yuan. 2020. Alkali-based pretreatment-facilitated lignin valorization: A review. Industrial & Engineering Chemistry Research 59 (39): 16923–16938.

    Article  CAS  Google Scholar 

  • Yam, K.Y., W.C. Chong, and Y.T. Chung. 2020. Modified sugarcane bagasse as effective biosorbent for copper ions removal. IOP Conference Series: Earth and Environmental Science 463: 012086. https://doi.org/10.1088/1755-1315/463/1/012086.

    Article  Google Scholar 

  • Yu, J.-X., R.-A. Chi, Z.-Y. He, and Y.-F. Qi. 2011. Adsorption performances of cationic dyes from aqueous solution on pyromellitic dianhydride modified sugarcane bagasse. Separation Science and Technology 46 (3): 452–459.

    Article  CAS  Google Scholar 

  • Yu, J.-X., J. Zhu, L.-Y. Feng, X.-L. Cai, Y.-F. Zhang, and R.-A. Chi. 2019. Removal of cationic dyes by modified waste biosorbent under continuous model: Competitive adsorption and kinetics. Arabian Journal of Chemistry 12 (8): 2044–2051.

    Article  CAS  Google Scholar 

  • Zawierucha, I., A. Nowik-Zajac, T. Girek, J. Lagiewka, W. Ciesielski, B. Pawlowska, and R. Biczak. 2022. Arsenic (V) removal from water by resin impregnated with cyclodextrin ligand. Processes 10 (2): 253. https://doi.org/10.3390/pr10020253.

    Article  CAS  Google Scholar 

Download references

Funding

This work received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kingsley O. Iwuozor.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Consent for Publication

The authors have unanimously decided that this manuscript be sent for possible publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwuozor, K.O., Okoro, H.K., Adeniyi, A.G. et al. Sugarcane Bagasse Adsorbents: Bibliometric Insights and the Influence of Chemical Treatment on Adsorption Performance in Aqueous Solution. Sugar Tech 26, 333–351 (2024). https://doi.org/10.1007/s12355-024-01371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-024-01371-7

Keywords